北京邮电大学

科学技术成果年报

2017 年度

北京邮电大学科学技术研究院
2017 年度，《北京邮电大学科学技术成果年报》刊登通过结题的项目共 312 项，其中：国家级项目 100 项，省部级项目 61 项，一般纵向项目 17 项，横向合作项目 87 项，校级项目 46 项。

2017 年度，我校有 36 项科技成果获奖，其中：获国家级奖 1 项，获省部级奖 7 项，获社会力量奖 28 项。

2017 年度，我校有 337 项专利被授权，其中：授权发明专利 322 项，授权实用新型专利：13 项，外观设计：2 项。

本《年报》所列出的科研成果，其知识产权归北京邮电大学所有（与合作单位另有约定的除外）。

本《年报》内容未经我院授权不得以任何形式翻印、转载。如需技术转让，请与我院联系。联系电话：（010）62282052。
目录

2017年度获奖科技成果...（1）
2017年授权专利...（5）
2017年发布我校2016年度发表论文检索收录情况..（30）
2017年度学术成果汇总表...（30）

国家“973”“863”计划等国家级项目研究成果

新型光电子器件中的异质兼容集成与功能微结构体系基础研究.................................任晓敏等（31）
半导体异质兼容集成中的高质量异变外延与自组织纳米异质结构..............................任晓敏等（32）
智慧服务机理与理论...王敬宇等（32）
劳动者就业信息服务关键技术及服务模式研究...杨俊等（33）
新型超大容量全光交换网络架构及关键技术研究...纪越峰等（34）
新型超大容量全光交换网络体系架构、关键技术，协议及性能评估方法研究...............李慧等（34）
C波段16X1TBPS超高速大容量WDM光传输关键技术及实验系统研制.........................陈雪等（35）
基于PIC的实验系统、业务应用与评测技术...徐坤等（36）
10x10GB/S单片集成传输芯片及系统模块技术...徐坤等（37）
模拟直调8x6GHZ WDM芯片及光载无线传输模块技术..徐坤等（38）
室内定位基础设施研制与组网实施..刘雯等（38）
智能电网安全通信与智能化网络管控技术研究..亓峰等（39）
中文情感语义计算技术与系统..王小捷等（40）
深空信道模型、中继网络架构和通信传输协议...王晓湘等（41）
光接入网络演进技术研究与示范...陈雪等（42）
融合网络业务体系的开发..赵耀等（43）
TDD系统IPV6设备研发和产业化...许晓东等（43）
基于下一代互联网的国家干线公路网管理与服务应用示范工程...............................黄小红等（44）
基于IPV6的北斗位置服务开放平台应用...黄小红等（45）
下一代网络通过拉曼放大需要解决的新问题合作研究...忻向军等（46）

国家级自然科学基金项目研究成果

航空通信中NEMO网络路由优化技术和AAA机制的研究..刘元安等（47）
认知协同车联网中交通安全业务QOS保障传输机制的研究..罗涛等（47）
基于自主管理的 LTE 无线接入网节能机制和算法研究 ... 李文璟等（48）
基于供应链协同的无线传感网自适应覆盖控制技术研究 .. 张英海等（49）
基于认知的光载无线宽带接入网中的新模型与新方法 纪红等（49）
自适应多分辨率宽带频谱压缩感知 .. 郭文彬等（50）
面向 IMT-A 的 FEMTOCELL 绿色自组织关键技术研究 温向明等（51）
认知无线网络中分布与波束成形技术的研究 .. 郭莉等（51）
灵活栅格光网络中频谱分配与认知频谱调控技术研究 张杰等（52）
面向高清/超高清的感知视频编码及其并行技术研究 门爱东等（53）
模分复用光纤通信系统中模式激励与模式转换的研究 陈婉仪等（54）
基于光正交频分复用的波分复用光传输系统中非线性作用 乔耀军等（54）
高阶矢量调制格式信号光纤传输损伤及其数字相干接收研究 喻松等（55）
基于位置的量子密码学研究 .. 李柱军等（56）
基于自保护模式的数据防泄密版权管理技术研究 马兆丰等（57）
可靠性约束下的高收益云服务提供机制研究 .. 杨杰等（57）
基于激活性的复杂网络建模及其应用 .. 郭军等（58）
基于儿童语言学习机制的语言接地技术研究 .. 王小捷等（59）
基于认知与极化信号处理的功放节能研究 .. 冯春燕等（59）
光子辅助协同化的超宽带射频信号传输、处理和接收技术 徐坤等（60）
参与式协作感知关键技术研究 .. 马建等（61）
多宿主特性与叠加网络共存环境下的多路径传输机制与友好性理论研究 王敬宇等（61）
量子光学现象及其应用探索研究 .. 符秀丽等（62）
具有多层次拓扑结构的复杂网络聚类同步和节律动力学研究 石霞等（63）
基于纳米尺度高折射率差波长光栅的硅基宽光谱增强型集成光探测器研究 .. 段晓峰等（63）
基于光纤模式复用的多维度传输理论及技术研究 冀向军等（64）
高速高密度利用率的超正交光调制系统研究 .. 张琦等（65）
虚拟社区团购消费者行为决策及其群体福利最优研究 宁建武等（66）
半导体量子点与微纳金属结构表面等离激元相互作用的研究 刘玉敏等（66）
面向服务的无线传感器网络故障管理机制和算法 高志鹏等（67）
多速率移动传感网资源共享公平性研究 .. 谢东亮等（68）
无线多媒体感知反应网络信息质量保障的关键技术研究 ... 孙岩等（68）
一维纤锌矿基异质半导体纳米结构的制备及其光电特性研究 王永钢等（69）
少模光纤复用传输模式损伤机理与补偿技术...高冠军等（93）
基于联合潜在因子模型的跨领域信息推荐系统研究.....................................高升等（94）
物联网感知层入侵检测方法研究...李祺等（94）
组织从偶发事件中学习机制的研究：基于组织注意力的视角.........................赵晨等（95）
上市公司股份回购的内在特质、经济后果与管理对策研究............................何瑛等（96）
基于传声器阵列与信息融合的铁路货车滚动轴承早期故障诊断方法..............陈斌等（97）
有关四阶 MONGE-AMPERE 型方程若干问题的研究......................................鞠红杰等（98）
资源受限条件下多媒体感知数据的安全技术研究..肖晨等（99）
高密度低时延机器通信无线网络新理论和方法研究....................................毛国强等（100）
随机排队网络的动态控制..杨建奎等（100）
半导体纳米线异质结构：理论与实验研究...张霞等（101）
基于非高斯概率模型的跨域视觉分析...马占宇等（102）
基于微波光子技术的稀疏信息实时获取..徐坤等（102）

省部级项目研究成果

5G 无线网络架构与智能管控技术研究..温向明等（103）
北京邮电大学《信息通信动态新技术科普展厅》
水下激光通信等新型互动展品研制..高立等（104）
面向大满规模融合网络的行为机制建模和推演..顾仁涛等（105）
未来无线宽带互联网的智慧与公平传输机理研究...许长桥等（105）
GAAS 纳米线-IN(GA)AS 量子点复合径向 PIN 结阵列的制备及其光伏特性研究...张霞等（106）
基于多粒子纠缠态安全性检测的量子密编码协议设计与分析........................李剑等（107）
基于 A-GA2O3 外延薄膜的日盲紫外光电器件研究..吴真平等（107）
基于公共交通网络的城市车载感知网格建设...张英海等（108）
养老康复辅具科普展厅建设..汪晓春等（109）
基于大数据分析的 LTE 无线网络自动优化..高伟东等（110）
LTE-A 空口测试分析设备研发及产业化..赵成林等（111）
宽带光频压缩及其在精细光谱分析中的应用研究...戴一堂等（111）
融合经典保密通信的量子保密通信协议的研究..陈秀丽等（112）
姿态鲁棒人脸识别算法研究..邓伟洪等（113）
风险决策的神经机制：主动决策与被动决策...潘煜等（114）
面向单片光电子集成的异变外延与 III-V 族纳异性质结构研究....................王琦等（115）
无线电频谱资源经济价值和定价机制研究...王 琦等（140）
《我国无线电频谱资源市场化配置研究》第四部分.................................吕廷杰等（140）
“互联网＋”背景下，国内 P2P 网络借贷平台发展策略研究..........................赵保国等（141）
组织变革情境下通信运营商员工工作积极压力研究.....................................靳 娟等（142）
快速创意可视化工具与体感技术集成研究及示范............................魏 芳等（143）
量子密码协议设计的理论研究...陈秀波等（144）
基于软件定义网络的新型视频直播业务..刘 江等（144）
网络服务行为智能分析能力研究及实验..崔鸿雁等（145）
CCN 网络环境下新型 WEB 应用平台研发与实验验证..............................乔秀全等（146）
未来新一代移动通信网络自治管理机制研究与实验............................梁 栋等（146）

一般纵向项目研究成果

全球物联网时代的网络治理研究..张 杉等（147）
信息化和数字鸿沟现状与展望..张 杉等（148）
高校教师学生处理工作研究..宋良刚等（149）
北京市动漫游戏产业蓝皮书（2015）..王文宏等（149）
北京市动漫游戏产业蓝皮书（2016）..王文宏等（150）
北京市动漫游戏产业蓝皮书（2017）..王文宏等（151）
高校民族预科班会考改革和科学化管理研究

--高校民族预科班高等英语会考体系和实施方案研究...............................托 娅等（152）
网络时代的科技论文快速共享研究..张 茹等（152）
基于 IPV6 的行业物联网支撑技术产品研发及示范应用..............................辛 阳等（153）
噪声信道下的量子密码研究..秦素娟等（154）
TD-LTE-ADVANCEDTTCN 终端协议仿真..唐晓晟等（154）
唐山市依托电子政务全面建设权力运行电子监控体系..............................张 阔等（155）
舆情分析报告...吕 亮等（155）
网络名人影响力发展趋势报告..吕 亮等（156）
广东省新一代宽带无线移动通信产业发展“十二五”实施方案编制研究...李书芳等（158）

其它结题科技成果一览表...（159）
北京邮电大学青年科研创新计划专项课题一览表................................（160）
北京邮电大学横向合作项目一览表..（163）
<table>
<thead>
<tr>
<th>序号</th>
<th>项目名称</th>
<th>获奖类别</th>
<th>获奖等级</th>
<th>主要完成单位</th>
<th>主要完成人</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>远海域卫星导航与通信融合关键技术</td>
<td>国家技术发明奖</td>
<td>二等奖</td>
<td>北京邮电大学，上海达华测绘有限公司，北京华力创新科技股份有限公司，厦门雅迅网络股份有限公司，上海华测导航技术股份有限公司</td>
<td>邓中亮，路 骏，刘 雯，崔银秋，赵延平，陈典全</td>
</tr>
<tr>
<td>2</td>
<td>张 平</td>
<td>全国创新争先奖章</td>
<td></td>
<td>北京邮电大学</td>
<td>张 平</td>
</tr>
<tr>
<td>3</td>
<td>多媒体传感网基础理论与方法</td>
<td>高等学校自然科学奖</td>
<td>一等奖</td>
<td>北京邮电大学</td>
<td>马华东，刘 亮，罗 红，赵 东，孙 岩</td>
</tr>
<tr>
<td>4</td>
<td>异构无线网络的协同自组织技术及应用</td>
<td>北京市科学技术奖</td>
<td>一等奖</td>
<td>北京邮电大学，京信通信系统（广州）有限公司，大唐移动通信设备有限公司，工业和信息化部电信研究院</td>
<td>彭木根，王文博，张远见，王文清，张 翔，赵中原，伍尚坤，徐霞艳，杨 波，李 勇，邹素玲，陈 凯，高 军，杨恩远</td>
</tr>
<tr>
<td>5</td>
<td>多维度光信号的低噪放大及灵活信号处理研究</td>
<td>北京市科学技术奖</td>
<td>基础研究类三等奖</td>
<td>北京邮电大学</td>
<td>慕向军，刘 博，张丽佳，张 琦，尹霄丽，王拥军</td>
</tr>
<tr>
<td>6</td>
<td>电子商务全产业链服务平台研发与应用</td>
<td>北京市科学技术奖</td>
<td>技术开发类二等奖</td>
<td>北京东尚科信息技术有限公司，北京邮电大学，北京京东世纪贸易有限公司，北京京东叁佰陆拾度电子商务有限公司</td>
<td>马 松，翁 志，高志鹏，于永利，赵一鸿，何 刚，牛 混，赵国梁，赵 刚，李鹏涛</td>
</tr>
<tr>
<td>7</td>
<td>电力企业统计及辅助决策关键技术与应用</td>
<td>北京市科学技术奖</td>
<td>技术开发类二等奖</td>
<td>北京中电普华信息技术有限公司，北京邮电大学，国网信息通信产业集团有限公司</td>
<td>曹占峰，刘进新，马占宇，胡海洋，王宏志，安东升，杨 树，孙丕石，肖 波，尹洪苓</td>
</tr>
<tr>
<td>8</td>
<td>基于多频点聚合与动态感知技术的低频新能源物联网研发及产业化</td>
<td>北京市科学技术奖</td>
<td>技术开发类三等奖</td>
<td>普天信息技术有限公司，中电信息通信产业集团有限公司，中电浙江省电力公司，国家无线电监测中心，北京邮电大学，中电江苏省电力公司</td>
<td>陶雄强，王维明，田淑华，严玉平，侯 悦，杨 斌</td>
</tr>
<tr>
<td>9</td>
<td>全光纤高可靠电网监测与通信融合关键技术与应用</td>
<td>中国光学工程学会科技创新奖</td>
<td>二等奖</td>
<td>北京邮电大学，国网江西省电力公司信息通信分公司，全球能源互联网研究院</td>
<td>张治国，李路明，郭经红，伍小生，王立芊，蔡志民，张 民，王 华，马 勇，梁 云</td>
</tr>
<tr>
<td>10</td>
<td>多维度光信号的低噪放大及大容量长距离传输</td>
<td>中国产学研合作创新成果奖</td>
<td>一等奖</td>
<td>北京邮电大学，复旦大学，北京凌云光子技术有限公司</td>
<td>慕向军，刘 博，迟 楠，张 琦，田清华，王文涛，李志沛</td>
</tr>
<tr>
<td>序号</td>
<td>项目名称</td>
<td>获奖类别/获奖等级</td>
<td>主要完成单位</td>
<td>主要完成人</td>
<td></td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
<td>--</td>
<td>-------------------------------------</td>
<td></td>
</tr>
<tr>
<td>11</td>
<td>全光纤高可靠电网监测与通信融合关键技术与应用</td>
<td>中国产学研合作创新成果奖二等奖</td>
<td>北京邮电大学，国网江西省电力公司信息通信分公司，全球能源互联网研究院</td>
<td>张治国，李路明，郭经红，伍小生，王立芊，蔡志民，张民</td>
<td></td>
</tr>
<tr>
<td>12</td>
<td>纪越峰</td>
<td>中国产学研合作创新奖（个人）</td>
<td>北京邮电大学</td>
<td>纪越峰</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>程渤</td>
<td>中国产学研合作创新奖（个人）</td>
<td>北京邮电大学</td>
<td>程渤</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>电力用户大数据智能画像技术及应用</td>
<td>吴文俊人工智能科技进步奖一等奖</td>
<td>北京邮电大学，北京工业大学，北京中电普华信息技术有限公司，中国电子技术标准化研究院</td>
<td>马占宇，杨震，高升，张文，刘贯刚，郭军，范科峰，江再玉，涂山，叶润国，徐维，赖英旭，朱平飞，蔺志青，欧阳红</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>数字机械化与人工智能中的数学定理证明系统及应用</td>
<td>吴文俊人工智能自然科学奖二等奖</td>
<td>北京邮电大学</td>
<td>郁文生</td>
<td></td>
</tr>
<tr>
<td>16</td>
<td>基于群体智能的车联网服务支撑平台</td>
<td>吴文俊人工智能科技进步奖三等奖</td>
<td>北京邮电大学</td>
<td>李静林，刘志皓，王尚广，孙其博，周傲</td>
<td></td>
</tr>
<tr>
<td>17</td>
<td>长寿命航天机构高可靠设计与服役自保障技术及应用</td>
<td>中国机械工业科学技术奖（科技进步奖）一等奖</td>
<td>北京空间飞行器总体设计部，北京航空航天大学，燕山大学，哈尔滨工业大学，北京邮电大学，北京卫星制造厂</td>
<td>谭春林，于登云，刘日平，孙京，赵阳，张建国，陈钢，潘博，刘育强，韩建超，孙汉旭，姚承，马明臻，高鹏，路懿</td>
<td></td>
</tr>
<tr>
<td>18</td>
<td>ITU-T Y.2028 “多接入智能接入选择”等 3 项 ITU-T 智能边缘网络系列国际标准</td>
<td>中国通信标准化协会科学奖三等奖</td>
<td>中国联合网络通信集团有限公司，中国移动通信集团公司，中讯邮电咨询设计院有限公司，北京邮电大学</td>
<td>郭爱鹏，唐雄燕，王光全，王亚晨，胡博，周光涛，赫罡</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>《单模光纤偏振模色散的试验方法 第 2 部分：链路偏振模色散系数统计参数（PMDQ）的计算方法》</td>
<td>中国通信标准化协会科学奖三等奖</td>
<td>烽火科技集团有限公司（武汉邮电科学研究院），中讯邮电咨询设计院有限公司，长飞光纤光缆股份有限公司，北京邮电大学</td>
<td>刘骋，祁庆庆，贺永涛，李婧，胡鹏，喻琴，李春生</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>面向 P 波比特级光交换的大规模协同控制与组网技术</td>
<td>中国电子学会科学技术奖（技术发明类）一等奖</td>
<td>北京邮电大学，北京邮电大学，烽火通信科技股份有限公司</td>
<td>黄善国，杨辉，李巨浩，郭剑礼，祝存涛，陈章渊</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>高效融合的超大容量光接入技术及应用</td>
<td>中国电子学会科学技术奖（科技进步类）一等奖</td>
<td>北京邮电大学，中兴通讯股份有限公司</td>
<td>纪越峰，许明，顾仁涛，贝劲松，陈雪，黄新刚，王立芊，李慧，耿丹，杨波，张治国，柏琳，孙砚峰，蔡惊哲，张佳玮</td>
<td></td>
</tr>
<tr>
<td>序号</td>
<td>项目名称</td>
<td>获奖类别</td>
<td>获奖等级</td>
<td>主要完成单位</td>
<td>主要完成人</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>----------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>22</td>
<td>抗强电磁脉冲的隔离式分组接地技术及应用</td>
<td>中国电子学会科学技术奖（科技进步类）</td>
<td>一等奖</td>
<td>北京邮电大学，深圳远征技术有限公司，中南建筑设计院股份有限公司，南方电网科学研究院有限责任公司，中国铁塔股份有限公司广东研究院，中国气象局广州热带海洋气象研究所</td>
<td>吴帆, 张庭炎, 霍金海, 高健, 熊江, 蔡汉生, 赖世能, 陈绍东, 吴永乐, 范文浩, 穆冬梅, 李春园, 陈志东, 夏政, 蔡洁</td>
</tr>
<tr>
<td>23</td>
<td>分数维度晶体电子态系理论与新颖半导体异质结构及器件</td>
<td>中国电子学会科学技术奖（自然科学类）</td>
<td>三等奖</td>
<td>北京邮电大学, 南开大学</td>
<td>任晓敏, 张霞, 颜鑫, 黄辉, 刘艳格</td>
</tr>
<tr>
<td>24</td>
<td>位置网技术与应用研究</td>
<td>中国电子学会科学技术奖（科技进步类）</td>
<td>一等奖</td>
<td>清华大学, 中国四维测绘技术有限公司, 北京邮电大学, 赛尔网络有限公司, 北京四维图新科技股份有限公司, 北京世纪高通科技有限公司</td>
<td>王继龙, 赵军, 黄小红, 安常青, 孙东红, 刘铁军, 黄永峰, 李文静, 姜彩萍, 张千里, 付晓东, 闫大鹏, 徐晋晖, 徐静, 肖海攀</td>
</tr>
<tr>
<td>25</td>
<td>基于智能频谱感知的电力无线专网研发及产业化</td>
<td>中国电子学会科学技术奖（科技进步类）</td>
<td>二等奖</td>
<td>中兴通讯股份有限公司, 北京邮电大学, 南京邮电大学, 中国联合网络通信有限公司</td>
<td>董振江, 吕达, 苏森, 孙雁飞, 张云勇, 刘江, 杨勇, 王蔚, 黄震江, 王晓东</td>
</tr>
<tr>
<td>26</td>
<td>智能网络的电信运营关键技术与产业化</td>
<td>中国电子学会科学技术奖（科技进步类）</td>
<td>三等奖</td>
<td>国网信息通信产业集团有限公司, 国家电网公司信息通信部, 国家无线电监测中心, 北京邮电大学, 国网重庆市电力公司</td>
<td>王继业, 陶雄强, 杨斌, 闫淑辉, 严玉平, 侯悦, 彭元龙, 徐光年, 韩志军, 方青</td>
</tr>
<tr>
<td>27</td>
<td>大容量弹性化灵活带宽光网络技术创新与规模应用</td>
<td>中国电子学会科学技术奖（科技进步类）</td>
<td>一等奖</td>
<td>北京邮电大学, 华为技术有限公司, 中国移动通信集团公司</td>
<td>张杰, 吴庆华, 李燕, 陶本金, 白立荣, 张德江, 王磊, 罗贤龙, 杨辉, 李允博, 汪浩, 张伟, 郁小松, 林毅, 高冠军</td>
</tr>
<tr>
<td>28</td>
<td>复杂通信环境下移动性管理技术</td>
<td>中国电子学会科学技术奖（科技进步类）</td>
<td>一等奖</td>
<td>北京邮电大学, 华为技术有限公司, 中国移动通信集团公司</td>
<td>陈佐社, 胡博, 时岩, 蔡月民, 艾明</td>
</tr>
</tbody>
</table>

3
<table>
<thead>
<tr>
<th>序号</th>
<th>项目名称</th>
<th>获奖类别</th>
<th>获奖等级</th>
<th>主要完成单位</th>
<th>主要完成人</th>
</tr>
</thead>
<tbody>
<tr>
<td>31</td>
<td>电磁空间频谱资源认知、协同与竞争理论方法研究</td>
<td>中国通信学会科学技术奖（自然科学类）</td>
<td>一等奖</td>
<td>南京航空航天大学，浙江大学，北京邮电大学</td>
<td>吴启晖，张朝阳，冯志勇，史清江，张小飞</td>
</tr>
<tr>
<td>32</td>
<td>通讯信息反欺诈系统的关键技术及应用</td>
<td>中国通信学会科学技术奖（科技进步类）</td>
<td>二等奖</td>
<td>中国移动通信集团公司，北京邮电大学，杭州东信北邮信息技术有限公司</td>
<td>廖建新，张滨，王敏宇，刘利军，徐童，袁捷，张磊，娄涛，石川，冯运波</td>
</tr>
<tr>
<td>33</td>
<td>高飞</td>
<td>中国通信学会第一届青年科技奖</td>
<td></td>
<td>北京邮电大学</td>
<td>高飞</td>
</tr>
<tr>
<td>34</td>
<td>工业 X 射线多模式成像技术及装置开发</td>
<td>中国体视学学会科学技术奖（科技进步类）</td>
<td>一等奖</td>
<td>北京航空航天大学，中国特种设备检测研究院，中国计量科学研究院，北京邮电大学</td>
<td>杨民，梁丽红，李兴东，郭文明，郭彬，韩旭</td>
</tr>
<tr>
<td>35</td>
<td>宽带光信号分析仪</td>
<td>中国仪器仪表学会科学技术奖科技进步奖</td>
<td>二等奖</td>
<td>北京理工大学，北京邮电大学，超光（天津）信息技术有限公司</td>
<td>杨爱英，冯立辉，孙雨南，乔耀军，宋志国</td>
</tr>
<tr>
<td>36</td>
<td>多模态图像与文本的关联检索分析</td>
<td>中国指挥与控制学会科学技术奖科技进步奖</td>
<td>三等奖</td>
<td>北京邮电大学</td>
<td>李睿凡，冯方向，王小捷，鲁鹏，张光卫</td>
</tr>
</tbody>
</table>
2017 年授权专利
（共 337 项，其中：发明专利：322 项，实用新型：13 项，外观设计：2 项）

<table>
<thead>
<tr>
<th>序号</th>
<th>专利名称</th>
<th>发明人</th>
<th>专利号</th>
<th>专利申请日</th>
<th>专利权人</th>
<th>授权公告日</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>一种半静态上行功率控制方法</td>
<td>郑侃，陈家玓，吴文君</td>
<td>ZL 2011 1 0123331.0</td>
<td>2010-5-13</td>
<td>北京邮电大学</td>
<td>2017-4-19</td>
</tr>
<tr>
<td>2</td>
<td>软空频复用方法与装置、基站</td>
<td>王卫东，张英海，王朝炜，崔高峰，余阳，许晓东</td>
<td>ZL 2010 1 0577883.4</td>
<td>2010-12-2</td>
<td>北京邮电大学</td>
<td>2017-4-12</td>
</tr>
<tr>
<td>3</td>
<td>一种基于用户位置列表的 D2D 用户对选择复用多个蜂窝用户资源的方法</td>
<td>陈力，王彬，陈晓航，张欣，常永宇，杨大成</td>
<td>ZL 2011 1 0007237.9</td>
<td>2011-1-14</td>
<td>北京邮电大学</td>
<td>2017-2-22</td>
</tr>
<tr>
<td>4</td>
<td>一种 D2D 用户对可同时复用多个蜂窝用户资源的方法</td>
<td>陈力，王彬，陈晓航，张欣，常永宇，杨大成</td>
<td>ZL 2011 1 0007244.9</td>
<td>2011-1-14</td>
<td>北京邮电大学</td>
<td>2017-4-5</td>
</tr>
<tr>
<td>5</td>
<td>RFID 标签及识别方法和装置</td>
<td>王朝炜，乔举义，王卫东，张英海</td>
<td>ZL 2011 1 0274309.6</td>
<td>2011-9-16</td>
<td>北京邮电大学</td>
<td>2017-2-8</td>
</tr>
<tr>
<td>6</td>
<td>传输模式选择方法、装置及移动终端</td>
<td>王朝炜，余阳，闫飞燕，王卫东，张英海</td>
<td>ZL 2011 1 0276761.6</td>
<td>2011-9-19</td>
<td>北京邮电大学</td>
<td>2017-4-5</td>
</tr>
<tr>
<td>7</td>
<td>多跳中继路径选择方法与系统</td>
<td>王朝炜，王芳，余阳，闫飞燕，王卫东，张英海</td>
<td>ZL 2011 1 0313130.7</td>
<td>2011-10-17</td>
<td>北京邮电大学</td>
<td>2017-5-10</td>
</tr>
<tr>
<td>8</td>
<td>一种单元测试中软件故障自动定位方法</td>
<td>王雅文，宫云战，韩春晓，黄俊飞，金大海，唐容，蔡敏</td>
<td>ZL 2012 1 0127772.2</td>
<td>2012-4-27</td>
<td>北京邮电大学</td>
<td>2017-10-20</td>
</tr>
<tr>
<td>9</td>
<td>程序路径中确定函数调用的上下文环境影响的方法</td>
<td>王雅文，宫云战，周傲，黄俊飞，金大海，唐容，孙华玲</td>
<td>ZL 2012 1 0127786.0</td>
<td>2012-4-27</td>
<td>北京邮电大学</td>
<td>2017-10-20</td>
</tr>
<tr>
<td>10</td>
<td>预编码模式选择方法及其系统</td>
<td>张英海，鲁思行，王朝炜，王卫东，崔高峰</td>
<td>ZL 2012 1 0159768.4</td>
<td>2012-5-22</td>
<td>北京邮电大学</td>
<td>2017-4-5</td>
</tr>
<tr>
<td>11</td>
<td>异构网络中的调度策略选择方法与装置</td>
<td>张英海，胡晔，叶进，王犇，王卫东</td>
<td>ZL 2012 1 0180048.6</td>
<td>2012-6-1</td>
<td>北京邮电大学</td>
<td>2017-6-16</td>
</tr>
<tr>
<td>12</td>
<td>异构蜂窝网络多模单待终端的小区重选方法、装置及系统</td>
<td>纪晓东，靳浩，张昕然，贾玉玮，彭木根，王文博</td>
<td>ZL 2012 1 0357173.X</td>
<td>2012-9-21</td>
<td>北京邮电大学</td>
<td>2017-2-15</td>
</tr>
<tr>
<td>13</td>
<td>一种物理小区标识分类自配置方法及装置</td>
<td>彭木根，魏垚，闵仕君，王文博</td>
<td>ZL 2012 1 0418321.4</td>
<td>2012-10-26</td>
<td>北京邮电大学</td>
<td>2017-2-8</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-----------------------------</td>
<td>--------------------------</td>
<td>-------------</td>
<td>-------------------</td>
<td>-------------</td>
</tr>
<tr>
<td>14</td>
<td>用于提高授权系统收益的次级业务选择接入方法及装置</td>
<td>张兴，冯冲，邢佳，王文博</td>
<td>ZL 2012 1 0442086.4</td>
<td>2012-11-7</td>
<td>北京邮电大学</td>
<td>2017-4-12</td>
</tr>
<tr>
<td>15</td>
<td>无线资源分配方法和装置</td>
<td>李峨，赵宜升，徐全盛，王珂，李屹，纪红</td>
<td>ZL 2012 1 0572470.6</td>
<td>2012-12-25</td>
<td>北京邮电大学</td>
<td>2017-7-28</td>
</tr>
<tr>
<td>16</td>
<td>用于无线认知网络中双向中继传输的功率分配方法及装置</td>
<td>李勇，彭木根，王文博</td>
<td>ZL 2013 1 0001521.4</td>
<td>2013-1-4</td>
<td>北京邮电大学</td>
<td>2017-5-24</td>
</tr>
<tr>
<td>17</td>
<td>使用，管理多队列数据的共用缓存空间的方法和系统</td>
<td>顾仁涛，王震，纪越峰</td>
<td>ZL 2013 1 0044317.0</td>
<td>2013-2-1</td>
<td>北京邮电大学</td>
<td>2017-7-25</td>
</tr>
<tr>
<td>18</td>
<td>一种无线通信网的中继部署方法</td>
<td>王莉，宋梅，张勇，滕颖蕾，黄凌威，刘洋，满毅，马跃，郝晨辉，柯腾辉</td>
<td>ZL 2013 1 0088736.4</td>
<td>2013-3-19</td>
<td>北京邮电大学</td>
<td>2017-10-10</td>
</tr>
<tr>
<td>19</td>
<td>一种认知无线电频谱切换方法</td>
<td>邓素敏，杜磊，姬艳丽，王卫东，张英海</td>
<td>ZL 2013 1 0108413.7</td>
<td>2013-3-29</td>
<td>北京邮电大学</td>
<td>2017-11-14</td>
</tr>
<tr>
<td>20</td>
<td>一种可见光通信方法和系统以及一种用于移动节点传输功率控制方法和节点装置</td>
<td>朱晓斌，张光卫，陆鹏，韩圣亚</td>
<td>ZL 2013 1 0172904.8</td>
<td>2013-5-10</td>
<td>北京邮电大学</td>
<td>2017-4-26</td>
</tr>
<tr>
<td>21</td>
<td>一种基于经验似然方法的多径非高斯噪声信道的估计方法</td>
<td>赵成林，王鹏彪，马强，李斌，赵龙</td>
<td>ZL 2013 1 0196377.4</td>
<td>2013-5-24</td>
<td>北京邮电大学</td>
<td>2017-2-8</td>
</tr>
<tr>
<td>22</td>
<td>基于关键字分类并具有多种呈现方式的搜索引擎装置与方法</td>
<td>林荣恒，赵耀，邹华，吕文博，杨放春</td>
<td>ZL 2013 1 0229058.9</td>
<td>2013-6-8</td>
<td>北京邮电大学</td>
<td>2017-6-6</td>
</tr>
<tr>
<td>23</td>
<td>CoMP 协作簇、CoMP 用户划分方法及频谱资源分配方法</td>
<td>李巍海，钟听诚，姚云霄</td>
<td>ZL 2013 1 0241772.X</td>
<td>2013-6-18</td>
<td>北京邮电大学</td>
<td>2017-2-8</td>
</tr>
<tr>
<td>24</td>
<td>物联网节点信息存储方法及装置</td>
<td>范春晓，吴岳辛，张晓宝，李海军，董挺，饶丽琳，刘颖</td>
<td>ZL 2013 1 0250120.2</td>
<td>2013-6-21</td>
<td>北京邮电大学</td>
<td>2017-2-8</td>
</tr>
<tr>
<td>25</td>
<td>一种基于名字路由前缀存储、匹配及更新方法与装置</td>
<td>关建峰，张宏科，许长桥，张萌，权伟，戴勇，张钢贵，韩冰洁，何云航</td>
<td>ZL 2013 1 0277108.0</td>
<td>2013-7-3</td>
<td>北京邮电大学</td>
<td>2017-2-8</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>---------------------------------</td>
<td>-----------------------</td>
<td>------------</td>
<td>------------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>27</td>
<td>一种自适应的多业务资源分配的方法和装置</td>
<td>郑 侃,信雪梅,曾陟维</td>
<td>ZL 2013 1 0294128.9</td>
<td>2013-7-12</td>
<td>北京邮电大学</td>
<td>2017-2-8</td>
</tr>
<tr>
<td>28</td>
<td>一种基于模值差镜像不变形的SIFT图像匹配方法</td>
<td>黄治同, 李 婷,纪越峰</td>
<td>ZL 2013 1 02922720.5</td>
<td>2013-7-12</td>
<td>北京邮电大学</td>
<td>2017-2-8</td>
</tr>
<tr>
<td>29</td>
<td>一种应用于60GHz ROF系统的集成光子晶体MZI调制器</td>
<td>田慧平,张艳红,吴南南,申冠生,纪越峰</td>
<td>ZL 2013 1 0302576.9</td>
<td>2013-7-16</td>
<td>北京邮电大学</td>
<td>2017-8-25</td>
</tr>
<tr>
<td>30</td>
<td>一种均衡多业务终端聚合的方法和系统</td>
<td>郭少勇,芮兰兰,穆楠,李文璟,王颖,喻鹏</td>
<td>ZL 2013 1 0300787.9</td>
<td>2013-7-17</td>
<td>北京邮电大学</td>
<td>2017-2-8</td>
</tr>
<tr>
<td>31</td>
<td>双向业务数据流识别方法及装置</td>
<td>王立军,庄稼,陈雪,苏春,彭庭,曹盈盈,张治国</td>
<td>ZL 2013 1 0334898.1</td>
<td>2013-8-2</td>
<td>北京邮电大学</td>
<td>2017-10-13</td>
</tr>
<tr>
<td>32</td>
<td>车载无线通信信道接入方法、基站单元和车载移动终端</td>
<td>郑 侃,曾陟维,张尧</td>
<td>ZL 2013 1 0346654.5</td>
<td>2013-8-9</td>
<td>北京邮电大学</td>
<td>2017-2-8</td>
</tr>
<tr>
<td>33</td>
<td>卫星-地面综合移动通信的部分预编码方法和系统</td>
<td>崔琪桐,陶小峰,王凯栋</td>
<td>ZL 2013 1 0362365.4</td>
<td>2013-8-19</td>
<td>北京邮电大学</td>
<td>2017-5-31</td>
</tr>
<tr>
<td>34</td>
<td>认知无线网络中干扰保护带取值的方法及装置</td>
<td>冯志勇,冯泽冰,袁凌武,张轶凡,张奇勋</td>
<td>ZL 2013 1 0382526.6</td>
<td>2013-8-28</td>
<td>北京邮电大学</td>
<td>2017-11-14</td>
</tr>
<tr>
<td>35</td>
<td>一种基于时间限制的通信调度模拟方法</td>
<td>姚文斌,韩司,宋梦超</td>
<td>ZL 2013 1 0395233.1</td>
<td>2013-9-3</td>
<td>北京邮电大学</td>
<td>2017-4-12</td>
</tr>
<tr>
<td>36</td>
<td>蜂窝系统中D2D和固定中继两种协作多播模式的选择方法</td>
<td>王晓洲,杜明君,王冬宇,王玉龙,魏鹏</td>
<td>ZL 2013 1 0399058.3</td>
<td>2013-9-5</td>
<td>北京邮电大学</td>
<td>2017-4-12</td>
</tr>
<tr>
<td>37</td>
<td>基于信道分配和功率控制联合优化的无线资源分配方法</td>
<td>孙咏梅,武杨,纪越峰</td>
<td>ZL 2013 1 0433720.2</td>
<td>2013-9-23</td>
<td>北京邮电大学</td>
<td>2017-4-5</td>
</tr>
<tr>
<td>38</td>
<td>基于无线通信网络的异构业务调度方法</td>
<td>李曦,王珂,纪红,李屹,徐全盛,陈磊</td>
<td>ZL 2013 1 0464709.2</td>
<td>2013-10-8</td>
<td>北京邮电大学</td>
<td>2017-4-5</td>
</tr>
<tr>
<td>39</td>
<td>一种家庭基站双层网络中基于节能的功率控制方法</td>
<td>张志才,赵向明,赵振民,路兆铭,景文鹏,何盛华,张振海,扶奉超</td>
<td>ZL 2013 1 0463721.1</td>
<td>2013-10-9</td>
<td>北京邮电大学</td>
<td>2017-5-17</td>
</tr>
<tr>
<td>40</td>
<td>一种完全基于智能移动终端平台的室内定位系统和方法</td>
<td>李晨曦,杨凤忠,张帆,马乐,苏斌,李炜,孙咏梅,吴迪,黎星,崔健</td>
<td>ZL 2013 1 0465990.1</td>
<td>2013-10-9</td>
<td>国家电网公司,甘肃省电力公司,甘肃省电力公司信息通信公司,北京邮电大学</td>
<td>2017-4-12</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>--------</td>
<td>----------</td>
<td>------------</td>
<td>------------------</td>
<td>------------</td>
</tr>
<tr>
<td>41</td>
<td>一种球体斜抛运动中空气动力学模型参数求解方法</td>
<td>贾庆轩, 李旭龙, 宋祥希, 高小欣, 张红彬, 廖裕宁</td>
<td>ZL 2013 1 0472712.9</td>
<td>2013-10-11</td>
<td>北京邮电大学</td>
<td>2017-8-8</td>
</tr>
<tr>
<td>42</td>
<td>一种基于工作流可视化开发工具的 Java 工作流开发系统及其方法</td>
<td>吴步丹, 乔秀全, 程浩, 章洋, 王荣, 陈俊亮</td>
<td>ZL 2013 1 0491254.3</td>
<td>2013-10-18</td>
<td>北京邮电大学</td>
<td>2017-6-16</td>
</tr>
<tr>
<td>43</td>
<td>基于相位调制和去包络技术的时域展宽模数转换系统和方法</td>
<td>尹霄丽, 谢兴纲, 韩品品, 宋建宇, 吕磊, 徐灿, 郑晶, 李莉, 陈向军, 余重秀</td>
<td>ZL 2013 1 0489315.2</td>
<td>2013-10-18</td>
<td>北京邮电大学</td>
<td>2017-9-19</td>
</tr>
<tr>
<td>44</td>
<td>RESTful Web 服务的自动化语义标注系统和方法</td>
<td>赵耀, 林荣恒, 罗程多, 邹华, 杨放春</td>
<td>ZL 2013 1 0506897.0</td>
<td>2013-10-24</td>
<td>北京邮电大学</td>
<td>2017-1-25</td>
</tr>
<tr>
<td>45</td>
<td>一种缺陷处理方法及缺陷处理装置</td>
<td>王雅文, 宫云战, 金大海, 高欣飞, 王前</td>
<td>ZL 2013 1 0516392.2</td>
<td>2013-10-28</td>
<td>北京邮电大学</td>
<td>2017-3-29</td>
</tr>
<tr>
<td>46</td>
<td>移动应用中隐私信息泄露的静态检测方法</td>
<td>王雅文, 宫云战, 高欣飞, 于鹏洋, 金大海</td>
<td>ZL 2013 1 0524093.3</td>
<td>2013-10-30</td>
<td>北京邮电大学</td>
<td>2017-1-18</td>
</tr>
<tr>
<td>47</td>
<td>支持海量数据实时处理的网络分析系统和方法</td>
<td>赵耀, 林荣恒, 翁佳雷, 邹华, 杨放春, 赵翔, 陈雪龙, 王建强</td>
<td>ZL 2013 1 0529178.0</td>
<td>2013-10-31</td>
<td>北京邮电大学</td>
<td>2017-1-11</td>
</tr>
<tr>
<td>48</td>
<td>基于图形挖掘技术的语义化业务生成系统和方法</td>
<td>赵耀, 林荣恒, 刘梓, 赵翔, 邹华, 杨放春</td>
<td>ZL 2013 1 0566235.2</td>
<td>2013-11-14</td>
<td>北京邮电大学</td>
<td>2017-1-18</td>
</tr>
<tr>
<td>49</td>
<td>一种显式反馈方法及设备</td>
<td>王莹, 徐晶, 朱洪, 黄岩</td>
<td>ZL 2013 1 0576798.X</td>
<td>2013-11-18</td>
<td>北京邮电大学</td>
<td>2017-2-1</td>
</tr>
<tr>
<td>50</td>
<td>一种抗去同步化的轻量级 RFID 双向认证协议</td>
<td>贾庆轩, 赵雅, 高小欣, 张红彬, 廖裕宁</td>
<td>ZL 2013 1 0576630.9</td>
<td>2013-11-18</td>
<td>北京邮电大学</td>
<td>2017-2-8</td>
</tr>
<tr>
<td>51</td>
<td>一种基于信号强度概率的室内定位方法和装置</td>
<td>邓侣, 朱锦, 侯小月</td>
<td>ZL 2013 1 0598511.3</td>
<td>2013-11-22</td>
<td>北京邮电大学</td>
<td>2017-2-8</td>
</tr>
<tr>
<td>52</td>
<td>云基站用户数据处理方法、装置和系统</td>
<td>张洪光, 刘元安, 范文浩, 吴帆, 王艳秋, 唐碧华, 陈春环</td>
<td>ZL 2013 1 0598443.0</td>
<td>2013-11-22</td>
<td>北京邮电大学</td>
<td>2017-9-29</td>
</tr>
<tr>
<td>53</td>
<td>一种基于众核网络处理器并可快速部署的数据包检测监控系统</td>
<td>周锋, 王方驰, 李小勇</td>
<td>ZL 2013 1 0598644.0</td>
<td>2013-11-25</td>
<td>北京邮电大学</td>
<td>2017-1-11</td>
</tr>
<tr>
<td>54</td>
<td>一种轻量级无服务型 RFID 安全搜索方法</td>
<td>贾庆轩, 王鑫, 高欣, 赵兵, 陈明, 翟峰, 陈鹏</td>
<td>ZL 2013 1 0606734.X</td>
<td>2013-11-25</td>
<td>北京邮电大学</td>
<td>2017-7-25</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>--------------------------------</td>
<td>-------------------</td>
<td>------------------</td>
<td>--------------</td>
<td>----------------</td>
<td>--------------</td>
</tr>
<tr>
<td>55</td>
<td>一种推荐列表调整方法和装置</td>
<td>崔毅东,陈莉萍,</td>
<td>ZL 2013 1 0618205.1</td>
<td>2013-11-28</td>
<td>北京邮电大学</td>
<td>2017-2-15</td>
</tr>
<tr>
<td></td>
<td></td>
<td>梁 康,杨 读, 李 菁,雷友珣,漆 涛,金跃辉,周斯达</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>56</td>
<td>应用程序权限动态控制方法和系统</td>
<td>范文浩,吴 帆,</td>
<td>ZL 2013 1 0632042.2</td>
<td>2013-11-28</td>
<td>北京邮电大学</td>
<td>2017-4-19</td>
</tr>
<tr>
<td></td>
<td></td>
<td>周斌生,张洪光,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>唐碧华,余小秋,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>57</td>
<td>一种可跳跃的球形机器人</td>
<td>孙汉旭,张延恒,</td>
<td>ZL 2013 1 0624758.8</td>
<td>2013-11-28</td>
<td>北京邮电大学</td>
<td>2017-5-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>孔祥然,贾庆轩,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>张小飞,肖 寒,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>赵 伟,张鑫星,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>58</td>
<td>一种家庭基站基于干扰协调的资源分配方法及家庭基站</td>
<td>朱新宇,章 潜,</td>
<td>ZL 2013 1 0642344.8</td>
<td>2013-12-3</td>
<td>北京邮电大学</td>
<td>2017-1-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>夏海轮,李 鑫,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>李 萍</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>59</td>
<td>循环延迟分集系统中基于信道估计的物理层加密方法</td>
<td>孙松林,冉天天,</td>
<td>ZL 2013 1 0647893.4</td>
<td>2013-12-4</td>
<td>北京邮电大学</td>
<td>2017-1-25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>陆月明,景晓军,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>60</td>
<td>一种基于频率复用的LTE网络的用户切换式准入方法</td>
<td>崔琪楣,陶小峰,</td>
<td>ZL 2013 1 0655424.7</td>
<td>2013-12-5</td>
<td>北京邮电大学</td>
<td>2017-5-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>刘 贺,王 健,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>陈保豪,张平,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>61</td>
<td>基于能效最优的自适应比特功率加载方法及设备</td>
<td>李立华,孙 琦,</td>
<td>ZL 2013 1 0656353.2</td>
<td>2013-12-6</td>
<td>北京邮电大学</td>
<td>2017-5-24</td>
</tr>
<tr>
<td></td>
<td></td>
<td>毛峻岭,苏 鑫,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>62</td>
<td>一种信号带宽估计方法及装置</td>
<td>王 佳,吴 涛,</td>
<td>ZL 2013 1 0655006.8</td>
<td>2013-12-5</td>
<td>北京邮电大学</td>
<td>2017-1-25</td>
</tr>
<tr>
<td></td>
<td></td>
<td>刘丹谱,刘少林,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>尹长军,郝建文,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>罗 涛,李剑峰,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>63</td>
<td>一种波束切换方法</td>
<td>崔琪楣,陶小峰,</td>
<td>ZL 2013 1 0657234.9</td>
<td>2013-12-6</td>
<td>北京邮电大学</td>
<td>2017-5-17</td>
</tr>
<tr>
<td></td>
<td></td>
<td>郭灵芝,李左琳,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>张 平</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>64</td>
<td>切换控制方法、无线网络控制器和接入节点</td>
<td>龙 航,李 琳,</td>
<td>ZL 2013 1 0662660.1</td>
<td>2013-12-9</td>
<td>北京邮电大学</td>
<td>2017-5-3</td>
</tr>
<tr>
<td></td>
<td></td>
<td>王文博</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>65</td>
<td>云无线接入网中抑制导频污染的导频分配方法</td>
<td>彭木根,赵中原,</td>
<td>ZL 2013 1 0673832.5</td>
<td>2013-12-11</td>
<td>北京邮电大学</td>
<td>2017-8-11</td>
</tr>
<tr>
<td></td>
<td></td>
<td>谢信乾,周 政,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>王文博</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>66</td>
<td>一种基于链路优先的虚拟网络映射方法</td>
<td>王 颖,邱雪松,</td>
<td>ZL 2013 1 0676161.8</td>
<td>2013-12-11</td>
<td>北京邮电大学</td>
<td>2017-2-8</td>
</tr>
<tr>
<td></td>
<td></td>
<td>熊文成,李文瑾,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>熊 翔,陈兴渝,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>亓 峰</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>67</td>
<td>一种智能楼宇监控信息处理方法及系统</td>
<td>罗 红,陈 也,</td>
<td>ZL 2013 1 0683577.2</td>
<td>2013-12-12</td>
<td>北京邮电大学</td>
<td>2017-4-5</td>
</tr>
<tr>
<td></td>
<td></td>
<td>莫宗军,孙 岩,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>68</td>
<td>一种基于矛盾片段模式的路径生成方法</td>
<td>黄俊飞,宫云战,</td>
<td>ZL 2013 1 0693444.3</td>
<td>2013-12-17</td>
<td>北京邮电大学</td>
<td>2017-10-20</td>
</tr>
<tr>
<td></td>
<td></td>
<td>李 峰,王雅文,</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td></td>
<td>金大海</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>------------------------------</td>
<td>-------------------------------</td>
<td>------------</td>
<td>---------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>69</td>
<td>一种电力通信网络中故障定位的方法</td>
<td>邱雪松、杨杨、王开选、喻鹏、亓峰、陈兴渝、熊翱、焦阳、傅宁</td>
<td>ZL 2013 1 0717886.7</td>
<td>2013-12-23</td>
<td>北京邮电大学；国家电网公司</td>
<td>2017-4-5</td>
</tr>
<tr>
<td>70</td>
<td>一种图像检索方法</td>
<td>鲁鹏、李睿凡、刘咏彬、袁彩霞、王小捷</td>
<td>ZL 2013 1 0722183.3</td>
<td>2013-12-24</td>
<td>北京邮电大学</td>
<td>2017-1-11</td>
</tr>
<tr>
<td>71</td>
<td>一种提升频谱效率的高阶连续极化调制方法</td>
<td>刘芳芳、李若萌、郭彩丽、曾志民、冯春燕</td>
<td>ZL 2013 1 0723783.1</td>
<td>2013-12-24</td>
<td>北京邮电大学</td>
<td>2017-1-25</td>
</tr>
<tr>
<td>72</td>
<td>移动通信系统中 8 比特运算字长 Turbo 码的译码方法</td>
<td>钱荣荣、王胤鑫、漆渊、彭涛、王文博</td>
<td>ZL 2013 1 0722093.4</td>
<td>2013-12-24</td>
<td>北京邮电大学</td>
<td>2017-1-25</td>
</tr>
<tr>
<td>73</td>
<td>一种基于 GPP 和 SIMD 技术的信道编译码的数据格式转换方法</td>
<td>朱凯、丁忆南、贺志强</td>
<td>ZL 2013 1 0729424.7</td>
<td>2013-12-26</td>
<td>北京邮电大学</td>
<td>2017-4-12</td>
</tr>
<tr>
<td>74</td>
<td>基于接入点重选和自适应簇分裂的室内指纹定位方法</td>
<td>梁栋、毕真、周盈君、曾书磊、刘敬智</td>
<td>ZL 2013 1 0733950.0</td>
<td>2013-12-26</td>
<td>北京邮电大学</td>
<td>2017-7-4</td>
</tr>
<tr>
<td>75</td>
<td>支持内容中心网络的资源请求处理方法及 Web 浏览器</td>
<td>乔秀全、陈俊亮、彭悦</td>
<td>ZL 2013 1 0744978.4</td>
<td>2013-12-30</td>
<td>北京邮电大学</td>
<td>2017-6-16</td>
</tr>
<tr>
<td>76</td>
<td>一种基于 GPP 和 SIMD 技术的高速调制方法</td>
<td>朱凯、丁忆南、贺志强</td>
<td>ZL 2013 1 0752064.2</td>
<td>2013-12-31</td>
<td>北京邮电大学，无锡北邮感知技术产业研究院有限公司</td>
<td>2017-5-10</td>
</tr>
<tr>
<td>77</td>
<td>一种基于 GPP 和 SIMD 技术的快速调制方法</td>
<td>朱凯、丁忆南、贺志强</td>
<td>ZL 2014 1 0001171.6</td>
<td>2014-1-2</td>
<td>北京邮电大学</td>
<td>2017-1-25</td>
</tr>
<tr>
<td>78</td>
<td>基于症状与故障相关性的网络模型在环境故障诊断方法</td>
<td>王颖、邱雪松、严从新、李文瑾</td>
<td>ZL 2014 1 0001465.9</td>
<td>2014-1-2</td>
<td>北京邮电大学</td>
<td>2017-1-11</td>
</tr>
<tr>
<td>79</td>
<td>一种基于 GPP 和 SIMD 技术的快速调制方法</td>
<td>朱凯、丁忆南、贺志强</td>
<td>ZL 2014 1 0003720.3</td>
<td>2014-1-3</td>
<td>北京邮电大学</td>
<td>2017-4-19</td>
</tr>
<tr>
<td>80</td>
<td>一种基于 GPP 和 SIMD 技术的快速调制方法</td>
<td>朱凯、丁忆南、贺志强</td>
<td>ZL 2014 1 0010229.3</td>
<td>2014-1-9</td>
<td>北京邮电大学</td>
<td>2017-1-25</td>
</tr>
<tr>
<td>81</td>
<td>一种基于 GPP 和 SIMD 技术的快速调制方法</td>
<td>朱凯、丁忆南、贺志强</td>
<td>ZL 2014 1 0010362.9</td>
<td>2014-1-9</td>
<td>北京邮电大学</td>
<td>2017-4-5</td>
</tr>
<tr>
<td>82</td>
<td>一种基于 GPP 和 SIMD 技术的快速调制方法</td>
<td>朱凯、丁忆南、贺志强</td>
<td>ZL 2014 1 0010229.3</td>
<td>2014-1-9</td>
<td>北京邮电大学</td>
<td>2017-4-5</td>
</tr>
<tr>
<td>83</td>
<td>一种基于 GPP 和 SIMD 技术的快速调制方法</td>
<td>朱凯、丁忆南、贺志强</td>
<td>ZL 2014 1 0010362.9</td>
<td>2014-1-9</td>
<td>北京邮电大学</td>
<td>2017-4-5</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>--</td>
<td>------------------------</td>
<td>-----------</td>
<td>-------------</td>
<td>------------</td>
</tr>
<tr>
<td>84</td>
<td>一种可生存虚拟网络的映射方法</td>
<td>王颖,李文瑶,陈青云,邱雪松</td>
<td>ZL 2014 1 0025450.6</td>
<td>2014-1-20</td>
<td>北京邮电大学</td>
<td>2017-5-10</td>
</tr>
<tr>
<td>85</td>
<td>综合考虑主客观权重的 Wed 业务服务质量 QoS 的测量方法</td>
<td>王尚广,马友,孙其博,杨放春</td>
<td>ZL 2014 1 0026047.5</td>
<td>2014-1-21</td>
<td>北京邮电大学</td>
<td>2017-4-26</td>
</tr>
<tr>
<td>86</td>
<td>DCS 系统卫星链路下行数据确认帧传输方法</td>
<td>张琦,忻向军,田清华,刘悦,王拥军,张丽佳,李通,樊俊南,陈天,杨欣,李伟斌,齐小航</td>
<td>ZL 2014 1 0031081.1</td>
<td>2014-1-23</td>
<td>北京邮电大学</td>
<td>2017-5-10</td>
</tr>
<tr>
<td>87</td>
<td>一种适用于卫星数据采集系统的接入鉴权和认证方案</td>
<td>张琦,忻向军,田清华,张佳丽,刘博,王拥军,齐小航,何文清,文国利,李欢,王厚天</td>
<td>ZL 2014 1 0032049.5</td>
<td>2014-1-23</td>
<td>北京邮电大学</td>
<td>2017-11-10</td>
</tr>
<tr>
<td>88</td>
<td>基于 CEO-IGSO/MEO 双层卫星网络的通信方法</td>
<td>忻向军,张琦,田清华,王拥军,张丽佳,刘博</td>
<td>ZL 2014 1 0031082.6</td>
<td>2014-1-23</td>
<td>北京邮电大学</td>
<td>2017-12-5</td>
</tr>
<tr>
<td>89</td>
<td>社区问答服务中基于主客观上下文的问题转发系统和方法</td>
<td>郭亮,阙喜戎,王文东,龚向阳</td>
<td>ZL 2014 1 0037875.9</td>
<td>2014-1-26</td>
<td>北京邮电大学</td>
<td>2017-2-15</td>
</tr>
<tr>
<td>90</td>
<td>一种光传输过程中对光非线性相位补偿的优化方法</td>
<td>刘博,忻向军,田清华,张丽佳,王拥军,张琦,尹霄丽,方舟,胡善亭,田清华</td>
<td>ZL 2014 1 0037500.2</td>
<td>2014-1-26</td>
<td>北京邮电大学</td>
<td>2017-10-27</td>
</tr>
<tr>
<td>91</td>
<td>一种光网络中波长分配的方法</td>
<td>张丽佳,忻向军,刘博,王拥军,张琦,尹霄丽,王溥,胡善亭,田清华</td>
<td>ZL 2014 1 0036843.7</td>
<td>2014-1-26</td>
<td>北京邮电大学</td>
<td>2017-12-22</td>
</tr>
<tr>
<td>92</td>
<td>一种基于活动事件时空重组的视频摘要生成方法</td>
<td>马华东,李文生,张海涛,魏江洋,杨军杰,高一鸣,黄瀚,赵晓萌</td>
<td>ZL 2014 1 0040054.0</td>
<td>2014-1-27</td>
<td>北京邮电大学</td>
<td>2017-2-15</td>
</tr>
<tr>
<td>93</td>
<td>一种高密度无线网络中基于博弈的下行动态干扰协调方法</td>
<td>彭根根,孙成丹,谢信乾,张碧玲,李勇,赵中居</td>
<td>ZL 2014 1 0041216.2</td>
<td>2014-1-28</td>
<td>北京邮电大学</td>
<td>2017-4-5</td>
</tr>
<tr>
<td>94</td>
<td>一种远程监控方法与系统</td>
<td>程浩,陈俊亮,刘传昌</td>
<td>ZL 2014 1 0048634.4</td>
<td>2014-2-11</td>
<td>北京邮电大学</td>
<td>2017-6-23</td>
</tr>
<tr>
<td>95</td>
<td>一种软件看门狗系统及方法</td>
<td>章洋,吴步丹,陈生栋</td>
<td>ZL 2014 1 0051863.1</td>
<td>2014-2-14</td>
<td>北京邮电大学</td>
<td>2017-7-18</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>----------------------</td>
<td>-------------------</td>
<td>------------</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>96</td>
<td>一种名字路由快速匹配查找与装置</td>
<td>关建锋，许长桥，张宏科，权 伟，韩冰洁，张 萌，李 杰，石春秋</td>
<td>ZL 2014 1 0059219.9</td>
<td>2014-2-21</td>
<td>北京邮电大学</td>
<td>2017-11-28</td>
</tr>
<tr>
<td>97</td>
<td>一种蜂窝异构网络下的无线回传资源调度方法</td>
<td>腾颖蕾，张 勇，满 毅，袁得嵛，宋 梅，魏翼飞，王 莉，刘 洋，刘宁宁，程 刚，吴军甫，李瑞卿</td>
<td>ZL 2014 10064699.8</td>
<td>2014-2-25</td>
<td>北京邮电大学</td>
<td>2017-6-30</td>
</tr>
<tr>
<td>98</td>
<td>一种基于二重加权的OFDM系统快变信道估计方法</td>
<td>祝琪楣，陈保豪，杨 帆</td>
<td>ZL 2014 1 0065319.2</td>
<td>2014-2-25</td>
<td>北京邮电大学</td>
<td>2017-4-12</td>
</tr>
<tr>
<td>99</td>
<td>构建数据中心交换网络的方法及节点装置</td>
<td>郭宏翔，伍 剑，张东旭</td>
<td>ZL 2014 1 0069375.3</td>
<td>2014-2-27</td>
<td>北京邮电大学</td>
<td>2017-5-10</td>
</tr>
<tr>
<td>100</td>
<td>可编程控制的SDN网络测量系统和测量方法</td>
<td>王文东，龚向阳，阙喜戎，刘洋，刘宁宁，程刚，吴军甫，李瑞卿</td>
<td>ZL 2014 1 0074572.4</td>
<td>2014-3-3</td>
<td>北京邮电大学</td>
<td>2017-5-24</td>
</tr>
<tr>
<td>101</td>
<td>一种流量调度方法和设备</td>
<td>熊 舒，亓 峰，郭苏杰，郭少勇，李财雄，曾雪松</td>
<td>ZL 2014 1 0075238.0</td>
<td>2014-3-3</td>
<td>北京邮电大学</td>
<td>2017-1-11</td>
</tr>
<tr>
<td>102</td>
<td>一种根据外调制器任意偏置点稳定装置实现任意偏置点稳定的方法</td>
<td>李宝鹏，曾学光，张富安，张锦南</td>
<td>ZL 2014 1 0079629.X</td>
<td>2014-3-5</td>
<td>北京邮电大学</td>
<td>2017-6-16</td>
</tr>
<tr>
<td>103</td>
<td>一种智能楼宇系统中的规则验证方法及系统</td>
<td>孙 岩，王若思，罗 红</td>
<td>ZL 2014 1 0081701.2</td>
<td>2014-3-6</td>
<td>北京邮电大学</td>
<td>2017-4-19</td>
</tr>
<tr>
<td>104</td>
<td>基于基站资源池的多粒度可伸缩封装装置和方法</td>
<td>熊 邑，钱荣荣，彭 深，任亭亭，王文博</td>
<td>ZL 2014 1 0081693.1</td>
<td>2014-3-7</td>
<td>北京邮电大学</td>
<td>2017-4-12</td>
</tr>
<tr>
<td>105</td>
<td>室内可见光通信功率的优化方法</td>
<td>李立华，张 平，丁颖睿</td>
<td>ZL 2014 1 0096643.0</td>
<td>2014-3-14</td>
<td>北京邮电大学</td>
<td>2017-6-23</td>
</tr>
<tr>
<td>106</td>
<td>一种基于云计算PaaS平台的SLS调度装置和方法</td>
<td>金跃辉，崔毅东，苗 娟，苗 娟，苗 深，雷润娟，陈莉萍，杨 谊，肖志华，侯小兰</td>
<td>ZL 2014 1 0102554.2</td>
<td>2014-3-19</td>
<td>北京邮电大学</td>
<td>2017-5-10</td>
</tr>
<tr>
<td>107</td>
<td>物联网数据传输方法及网络节点</td>
<td>范春晓，吴岳辛，明 悦，董 伟，李晓晴</td>
<td>ZL 2014 1 0114379.9</td>
<td>2014-3-25</td>
<td>北京邮电大学</td>
<td>2017-5-24</td>
</tr>
<tr>
<td>108</td>
<td>一种基于视频图像处理的隧道烟雾检测装置与方法</td>
<td>郭文杰，喻 梓，戴丽萍，李天歌，姜明凤，顾畹仪</td>
<td>ZL 2014 1 0113682.7</td>
<td>2014-3-25</td>
<td>北京邮电大学</td>
<td>2017-6-9</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------------------------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>--------------</td>
<td>------------</td>
</tr>
<tr>
<td>109</td>
<td>生成时序安全属性类缺陷模式相关函数摘要信息的方法</td>
<td>金大海, 王前, 宫云战, 黄俊飞, 王雅文</td>
<td>ZL 2014 1 0115283.4</td>
<td>2014-3-25</td>
<td>北京邮电大学</td>
<td>2017-6-13</td>
</tr>
<tr>
<td>110</td>
<td>网络结构调整方法、汇聚节点和管理节点</td>
<td>郑志刚, 范春晓, 邹俊伟, 董挺, 朱丽, 李扬</td>
<td>ZL 2014 1 0114375.0</td>
<td>2014-3-25</td>
<td>北京邮电大学</td>
<td>2017-6-20</td>
</tr>
<tr>
<td>111</td>
<td>基于信道聚类的频谱感知方法及装置</td>
<td>冯志勇, 张轶凡, 田玉成, 高明菲, 晏潇</td>
<td>ZL 2014 1 0116936.0</td>
<td>2014-3-26</td>
<td>北京邮电大学</td>
<td>2017-11-14</td>
</tr>
<tr>
<td>112</td>
<td>一种提高社交网络用户产生内容信息影响力准确性的方法</td>
<td>李蕾, 林鑫, 王博远</td>
<td>ZL 2014 1 0119194.7</td>
<td>2014-3-27</td>
<td>北京邮电大学</td>
<td>2017-3-22</td>
</tr>
<tr>
<td>113</td>
<td>一种基于网络编码的多路并行传输方案</td>
<td>许长桥, 张宏科, 关建峰, 黎卓峰, 王目, 唐曼, 黄辉</td>
<td>ZL 2014 1 0124188.0</td>
<td>2014-3-28</td>
<td>北京邮电大学</td>
<td>2017-4-26</td>
</tr>
<tr>
<td>114</td>
<td>一种基于友好性的平行数据传输窗口机制</td>
<td>许长桥, 张宏科, 关建峰, 黎卓峰, 唐曼, 王目, 黄辉</td>
<td>ZL 2014 1 0124205.0</td>
<td>2014-3-28</td>
<td>北京邮电大学</td>
<td>2017-4-26</td>
</tr>
<tr>
<td>115</td>
<td>一种基于跨层评估的平行数据传输算法</td>
<td>许长桥, 张宏科, 关建峰, 黎卓峰, 唐曼, 王目, 黄辉</td>
<td>ZL 2014 1 0124203.1</td>
<td>2014-3-28</td>
<td>北京邮电大学</td>
<td>2017-9-12</td>
</tr>
<tr>
<td>116</td>
<td>基于模糊神经网络的网络覆盖及容量优化系统及优化方法</td>
<td>田辉, 张平, 范绍帅</td>
<td>ZL 2014 1 0133551.5</td>
<td>2014-4-3</td>
<td>北京邮电大学</td>
<td>2017-7-28</td>
</tr>
<tr>
<td>117</td>
<td>基站间动态协同覆盖方法</td>
<td>魏翼飞, 宋梅, 蒋超宇, 王雅莉, 马跃, 滕颖薇, 张勇, 满毅, 刘洋, 王莉, 胡炜, 王小军</td>
<td>ZL 2014 1 0138439.0</td>
<td>2014-4-8</td>
<td>北京邮电大学</td>
<td>2017-6-20</td>
</tr>
<tr>
<td>118</td>
<td>一种基于状态分区的静态缺陷检测求精方法</td>
<td>金大海, 张大林, 宫云战, 王雅文, 黄俊飞</td>
<td>ZL 2014 1 0138438.6</td>
<td>2014-4-8</td>
<td>北京邮电大学</td>
<td>2017-6-23</td>
</tr>
<tr>
<td>119</td>
<td>离散正弦变换实现非对称截断光正交频分复用的方法</td>
<td>乔耀军, 周骏, 蔡泥, 纪越峰</td>
<td>ZL 2014 1 0138616.5</td>
<td>2014-4-8</td>
<td>北京邮电大学</td>
<td>2017-9-19</td>
</tr>
<tr>
<td>120</td>
<td>一种蜂窝系统对单个基站的干扰分析方法及系统</td>
<td>张轶凡, 冯志勇, 韩祥辉, 张龙, 宿晨曦, 晏潇, 李阳, 张奇勋</td>
<td>ZL 2014 1 0150946.6</td>
<td>2014-4-15</td>
<td>北京邮电大学</td>
<td>2017-10-31</td>
</tr>
<tr>
<td>121</td>
<td>基于 GPP 的 LTE 宽带通信系统计算资源调度器及其调度方法</td>
<td>牛凯, 欧远彪, 贺志强</td>
<td>ZL 2014 1 0157678.0</td>
<td>2014-4-18</td>
<td>北京邮电大学</td>
<td>2017-9-8</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td>------------------------------------</td>
<td>------------</td>
<td>---</td>
<td>------------</td>
</tr>
<tr>
<td>122</td>
<td>蜂窝网络中干扰抑制方法及装置</td>
<td>张天魁，牛勤，曾志民，胡志蕊</td>
<td>ZL 2014 1 0160435.2</td>
<td>2014-4-21</td>
<td>北京邮电大学，无锡北邮感知技术产业研究院有限公司</td>
<td>2017-9-21</td>
</tr>
<tr>
<td>123</td>
<td>一种多天线移动播发束形成向量计算方法</td>
<td>许文俊，李胜钰，陈锋，王翔</td>
<td>ZL 2014 1 0161520.0</td>
<td>2014-4-22</td>
<td>北京邮电大学</td>
<td>2017-3-29</td>
</tr>
<tr>
<td>124</td>
<td>一种 WebRTC 客户端连传动态自适应选择的方法</td>
<td>双艳，苏森，冯恺，徐鹏，王玉龙</td>
<td>ZL 2014 1 0188155.2</td>
<td>2014-5-6</td>
<td>北京邮电大学</td>
<td>2017-6-6</td>
</tr>
<tr>
<td>125</td>
<td>基于快速小波变换和加权图像融合的单幅图像去雾方法</td>
<td>黄治同，张红，纪越峰</td>
<td>ZL 2014 1 0200960.2</td>
<td>2014-5-13</td>
<td>北京邮电大学</td>
<td>2017-4-5</td>
</tr>
<tr>
<td>126</td>
<td>一种室外聚类匹配定位方法和装置</td>
<td>罗新龙，孙启明，王耀辉，李虎，卞玉军</td>
<td>ZL 2014 1 0204479.0</td>
<td>2014-5-14</td>
<td>北京邮电大学，无锡北邮感知技术产业研究院有限公司，北京邮电大学</td>
<td>2017-3-29</td>
</tr>
<tr>
<td>127</td>
<td>基于集中控制和内容分发的无线通信网络系统</td>
<td>崔琪楣，陶小峰，史玉龙，王辉，谷宇，元大鹏</td>
<td>ZL 2014 1 0260200.2</td>
<td>2014-5-15</td>
<td>北京邮电大学</td>
<td>2017-7-21</td>
</tr>
<tr>
<td>128</td>
<td>一种用于网络传输的高速背包信道系统</td>
<td>郭彩丽，厉东明，曾志民，冯春燕，林晓琳</td>
<td>ZL 2014 1 0289950.0</td>
<td>2014-5-16</td>
<td>北京邮电大学</td>
<td>2017-7-11</td>
</tr>
<tr>
<td>129</td>
<td>一种基于文本信息的幸福感知智能检测方法和设备</td>
<td>齐佳音，傅湘玲，陈庆，曾丹</td>
<td>ZL 2014 1 0215110.X</td>
<td>2014-5-21</td>
<td>北京邮电大学</td>
<td>2017-5-24</td>
</tr>
<tr>
<td>130</td>
<td>一种用于无线中继通信的数据传输方法</td>
<td>廖建新，张乐剑，张磊，张成，李炜，王纯</td>
<td>ZL 2014 1 0232527.7</td>
<td>2014-5-28</td>
<td>北京邮电大学</td>
<td>2017-3-15</td>
</tr>
<tr>
<td>131</td>
<td>LTE-A 异构网络中低功率节点自组织方法</td>
<td>孙松林，冉天安，陈娜</td>
<td>ZL 2014 1 0235817.7</td>
<td>2014-5-30</td>
<td>北京邮电大学</td>
<td>2017-5-3</td>
</tr>
<tr>
<td>132</td>
<td>基于并联不对称马赫增德干涉仪的带内光信噪比监测方法</td>
<td>邱吉芳，袁博，伍剑，李岩，洪小斌，郭宏翔，林金桐</td>
<td>ZL 2014 1 0240090.1</td>
<td>2014-5-30</td>
<td>北京邮电大学</td>
<td>2017-11-3</td>
</tr>
<tr>
<td>133</td>
<td>一种基于模拟退火算法的任意模式精确转换方法</td>
<td>兰名君，高松，高立，齐晓莉，杜智超，蔡善勇，马晨星，顾畹仪</td>
<td>ZL 2014 1 0242121.7</td>
<td>2014-6-3</td>
<td>北京邮电大学</td>
<td>2017-2-15</td>
</tr>
<tr>
<td>134</td>
<td>一种 3D 码本构造方法及系统</td>
<td>王莹，蒋砺思，陈勇策，王爱玲</td>
<td>ZL 2014 1 0245811.8</td>
<td>2014-6-4</td>
<td>北京邮电大学</td>
<td>2017-6-16</td>
</tr>
<tr>
<td>135</td>
<td>一种利用宽带分配简化网络的路由方法</td>
<td>张丽佳，忻向军，刘明，张琦，王拥军，尹霄丽，郝剑鹏，李博文，田清华</td>
<td>ZL 2014 1 0252449.7</td>
<td>2014-6-9</td>
<td>北京邮电大学</td>
<td>2017-12-1</td>
</tr>
</tbody>
</table>

14
<table>
<thead>
<tr>
<th>序号</th>
<th>专利名称</th>
<th>发明人</th>
<th>专利号</th>
<th>专利申请日</th>
<th>专利权人</th>
<th>授权公告日</th>
</tr>
</thead>
<tbody>
<tr>
<td>136</td>
<td>基于加速度传感器的手势识别方法</td>
<td>王海婴，李正山</td>
<td>ZL 2014 1 0254283.2</td>
<td>2014-6-10</td>
<td>北京邮电大学</td>
<td>2017-2-8</td>
</tr>
<tr>
<td>137</td>
<td>一种图像中雨雪的去除方法</td>
<td>马华东，马境远，傅慧源，张丹</td>
<td>ZL 2014 1 0254065.9</td>
<td>2014-6-10</td>
<td>北京邮电大学</td>
<td>2017-4-19</td>
</tr>
<tr>
<td>138</td>
<td>一种基于最小编辑距离的半结构化文本匹配方法</td>
<td>赵宇，高升，郭军</td>
<td>ZL 2014 1 0257734.8</td>
<td>2014-6-11</td>
<td>北京邮电大学</td>
<td>2017-2-1</td>
</tr>
<tr>
<td>139</td>
<td>机会网络中面向视频投递质量优化的激励方法</td>
<td>马华东，马境远，吴红海，刘亮，赵东</td>
<td>ZL 2014 1 0256829.8</td>
<td>2014-6-11</td>
<td>北京邮电大学</td>
<td>2017-6-16</td>
</tr>
<tr>
<td>140</td>
<td>基于多视觉特征融合的人员识别方法</td>
<td>马华东，张海涛，魏海洋，赵彦，高一鸿，黄澄，傅慧源，赵晓萌</td>
<td>ZL 2014 1 0259069.6</td>
<td>2014-6-11</td>
<td>北京邮电大学</td>
<td>2017-7-21</td>
</tr>
<tr>
<td>141</td>
<td>一种基于蚁群算法的内容中心网络缓存定位方法</td>
<td>胡骞，武修洋，王文，郭泓，徐春秀，赵敬，韩海龙，胡谦，刘红宝，彭矗，王振华</td>
<td>ZL 2014 1 0265770.9</td>
<td>2014-6-13</td>
<td>北京邮电大学</td>
<td>2017-5-17</td>
</tr>
<tr>
<td>142</td>
<td>利用室内数据构建3D室内特征库的方法</td>
<td>罗新龙，王耀辉，孙启明，李虎，张雷</td>
<td>ZL 2014 1 0263510.8</td>
<td>2014-6-13</td>
<td>北京邮电大学</td>
<td>2017-6-27</td>
</tr>
<tr>
<td>143</td>
<td>基于多尺度小波变换的信号调制方式识别方法和系统</td>
<td>刘元安，刘芳，吕国福，高锦春，刘凯明，谢刚</td>
<td>ZL 2014 1 0268688.1</td>
<td>2014-6-17</td>
<td>北京邮电大学</td>
<td>2017-10-3</td>
</tr>
<tr>
<td>144</td>
<td>基于演化博弈论的社交网络信息传播预测方法</td>
<td>张熙，杨金翠，苏挽，方滨兴</td>
<td>ZL 2014 1 0273421.1</td>
<td>2014-6-18</td>
<td>北京邮电大学</td>
<td>2017-7-28</td>
</tr>
<tr>
<td>145</td>
<td>一种雨伞伞尾的自动化装配线</td>
<td>宋建洲，高荣，孙汉旭，贾庆轩，陈义杰</td>
<td>ZL 2014 1 0273445.7</td>
<td>2014-6-18</td>
<td>北京邮电大学</td>
<td>2017-1-18</td>
</tr>
<tr>
<td>146</td>
<td>一种网页暗链检测方法</td>
<td>刘建毅，雷醒涛，王维光，古恒，王权</td>
<td>ZL 2014 1 0273616.6</td>
<td>2014-6-18</td>
<td>北京邮电大学</td>
<td>2017-11-3</td>
</tr>
<tr>
<td>147</td>
<td>一种应用于多输入多输出系统的信号检测方法及装置</td>
<td>赵慈，李文芳，赵龙，王文博，郑侃</td>
<td>ZL 2014 1 0276463.0</td>
<td>2014-6-19</td>
<td>北京邮电大学，中国科学院微电子研究所</td>
<td>2017-9-29</td>
</tr>
<tr>
<td>148</td>
<td>消息代理服务器及信息发布订阅方法和系统</td>
<td>高锦春，裴君波，刘元安，马晓雷</td>
<td>ZL 2014 1 0281789.2</td>
<td>2014-6-20</td>
<td>北京邮电大学</td>
<td>2017-5-10</td>
</tr>
<tr>
<td>149</td>
<td>数字签名、签名认证装置以及数字签名方法</td>
<td>高锦春，裴君波，刘元安，马晓雷</td>
<td>ZL 2014 1 0281379.8</td>
<td>2014-6-20</td>
<td>北京邮电大学</td>
<td>2017-5-24</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>150</td>
<td>一种数据传输方法、装置及系统</td>
<td>赵慧，杨居沃，王文博，吴斌，周小平</td>
<td>ZL 2014 10280349.5</td>
<td>2014-6-20</td>
<td>北京邮电大学，中国科学院微电子研究所</td>
<td>2017-8-11</td>
</tr>
<tr>
<td>151</td>
<td>大规模 MIMO 中基于波束空间转换的散射信源定位方法</td>
<td>吕铁军，胡安中</td>
<td>ZL 2014 10279745.6</td>
<td>2014-6-20</td>
<td>北京邮电大学</td>
<td>2017-9-1</td>
</tr>
<tr>
<td>152</td>
<td>轨道角动量态可调谐的涡旋光束产生系统</td>
<td>苏森，双锴，桂俪文，王.fold，徐鹏，王玉龙</td>
<td>ZL 2014 10259588.2</td>
<td>2014-6-21</td>
<td>北京邮电大学</td>
<td>2017-2-15</td>
</tr>
<tr>
<td>153</td>
<td>无线设备中基于多路径的数据传输、路径选择方法和装置</td>
<td>范文浩，唐碧华，刘元安，吴帆，张洪光，金小敏，罗湘文</td>
<td>ZL 2014 10286312.3</td>
<td>2014-6-24</td>
<td>北京邮电大学</td>
<td>2017-9-22</td>
</tr>
<tr>
<td>154</td>
<td>调度器及其基于网络多路径并行传输的数据调度方法</td>
<td>刘元安，刘凯明，黄琦，杨阳，范媛媛，付昊，刘芳</td>
<td>ZL 2014 10300236.7</td>
<td>2014-6-26</td>
<td>北京邮电大学</td>
<td>2017-10-10</td>
</tr>
<tr>
<td>155</td>
<td>无线自组网中基于信道分配的路由方法、装置</td>
<td>刘元安，刘凯明，黄琦，杨阳，范媛媛，付昊，刘伟彦，唐骏华，李超，刘伟</td>
<td>ZL 2014 10300254.5</td>
<td>2014-6-26</td>
<td>北京邮电大学</td>
<td>2017-10-10</td>
</tr>
<tr>
<td>156</td>
<td>移动终端、心跳转发服务器以及心跳信息发送方法和系统</td>
<td>吴帆，吴超，范文浩，李论，唐碧华，金师兴</td>
<td>ZL 2014 10302253.4</td>
<td>2014-6-27</td>
<td>北京邮电大学</td>
<td>2017-6-13</td>
</tr>
<tr>
<td>157</td>
<td>一种基于软件定义网络的用户自主路由定制系统和方法</td>
<td>王敬宇，王纯，廖建新，李炜，王晶，徐童</td>
<td>ZL 2014 10312519.3</td>
<td>2014-7-2</td>
<td>北京邮电大学</td>
<td>2017-5-17</td>
</tr>
<tr>
<td>158</td>
<td>一种基于无线信息与能量同时传输系统的能量分配方法</td>
<td>王莹，陈勇策，孙瑞锦，蒋砺思，张媛</td>
<td>ZL 2014 10313402.7</td>
<td>2014-7-2</td>
<td>北京邮电大学</td>
<td>2017-8-25</td>
</tr>
<tr>
<td>159</td>
<td>认知无线电网络中多播传输联合接入控制及预编码码计算方法</td>
<td>许文俊，欧蓉，李胜锋，周锐</td>
<td>ZL 2014 10317711.1</td>
<td>2014-7-4</td>
<td>北京邮电大学</td>
<td>2017-9-5</td>
</tr>
<tr>
<td>160</td>
<td>一种用于无线中继通信的协同数据传输方法</td>
<td>娄建新，张成，张磊，张乐剑，王纯，樊利民</td>
<td>ZL 2014 10320887.2</td>
<td>2014-7-4</td>
<td>北京邮电大学</td>
<td>2017-9-9</td>
</tr>
<tr>
<td>161</td>
<td>一种基于无线通信的目标定位方法及装置</td>
<td>郑侃，朱祥，赵慧</td>
<td>ZL 2014 10321364.X</td>
<td>2014-7-7</td>
<td>北京邮电大学</td>
<td>2017-7-14</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>------------------------------</td>
<td>-------------------</td>
<td>-------------</td>
<td>---------------------</td>
<td>------------------</td>
</tr>
<tr>
<td>163</td>
<td>一种基于时分-波分双重复用的多功能量子保密通信节点结构</td>
<td>孙咏梅,詹镭,纪越峰</td>
<td>ZL 2014 1 0323020.2</td>
<td>2014-7-8</td>
<td>北京邮电大学</td>
<td>2017-12-12</td>
</tr>
<tr>
<td>164</td>
<td>一种 TCP 视频流业务的 QoE 训练和评估的方法及系统</td>
<td>李文璟,熊航,刘帆,耿杨</td>
<td>ZL 2014 1 0325896.0</td>
<td>2014-7-9</td>
<td>北京邮电大学</td>
<td>2017-9-19</td>
</tr>
<tr>
<td>165</td>
<td>内容中心多跳蜂窝网络路由方法及装置</td>
<td>张天魁,周乐,许晓耕,曾志民</td>
<td>ZL 2014 1 0328385.4</td>
<td>2014-7-10</td>
<td>北京邮电大学</td>
<td>2017-9-12</td>
</tr>
<tr>
<td>166</td>
<td>一种增加消息队列模型的发布/订阅系统及其工作方法</td>
<td>翟毅东,雷友珣,黄瑞情,陈霞</td>
<td>ZL 2014 1 0346381.9</td>
<td>2014-7-21</td>
<td>北京邮电大学</td>
<td>2017-6-13</td>
</tr>
<tr>
<td>167</td>
<td>一种基于特征计算的极化码译码器和极化码译码方法</td>
<td>牛凯,许郑磊</td>
<td>ZL 2014 1 0360054.9</td>
<td>2014-7-25</td>
<td>北京邮电大学</td>
<td>2017-7-28</td>
</tr>
<tr>
<td>168</td>
<td>HEVC 中屏幕内容编码的码率控制方法</td>
<td>孙松林,郭耀耀,陈钢,刘玮</td>
<td>ZL 2014 1 0369826.5</td>
<td>2014-7-30</td>
<td>北京邮电大学</td>
<td>2017-5-30</td>
</tr>
<tr>
<td>169</td>
<td>全双工通信中时频域与极化域处理级联的自干扰消除方法</td>
<td>冯春燕,刘瑶,郭彩丽,曾志民</td>
<td>ZL 2014 1 0374085.X</td>
<td>2014-7-31</td>
<td>北京邮电大学</td>
<td>2017-2-22</td>
</tr>
<tr>
<td>170</td>
<td>一种双功率模式包络跟踪方法</td>
<td>朱新宁,吴勇彬,曾志民,李欣书林</td>
<td>ZL 2014 1 0374570.7</td>
<td>2014-7-31</td>
<td>北京邮电大学,罗德与施瓦茨(中国)科技有限公司</td>
<td>2017-4-19</td>
</tr>
<tr>
<td>171</td>
<td>一种基于时延优化的车联网控制方法</td>
<td>郭彩丽,张磊,冯春燕,曾志民</td>
<td>ZL 2014 1 0384225.1</td>
<td>2014-8-6</td>
<td>北京邮电大学</td>
<td>2017-12-5</td>
</tr>
<tr>
<td>172</td>
<td>一种多 HASH 函数多帧耦合型 RFID 防碰撞算法 (MHMFG)</td>
<td>贾庆轩,王鑫,赵兵,高欣</td>
<td>ZL 2014 1 0397880.0</td>
<td>2014-8-13</td>
<td>北京邮电大学</td>
<td>2017-10-10</td>
</tr>
<tr>
<td>173</td>
<td>分组 N 叉跟踪树型 RFID 防碰撞算法</td>
<td>贾庆轩,王鑫,赵兵,高欣</td>
<td>ZL 2014 1 0397119.7</td>
<td>2014-8-13</td>
<td>北京邮电大学</td>
<td>2017-10-17</td>
</tr>
<tr>
<td>174</td>
<td>一种关节伺服系统参数辨识和控制参数在线优化方法</td>
<td>贾庆轩,赵文灿,高欣,孙汉旭</td>
<td>ZL 2014 1 0403785.7</td>
<td>2014-8-15</td>
<td>北京邮电大学</td>
<td>2017-8-29</td>
</tr>
<tr>
<td>175</td>
<td>突发事件话题状态的预测装置及预测方法</td>
<td>陈莉萍,王酗,杨谈,崔毅东,金跃辉</td>
<td>ZL 2014 1 0412196.5</td>
<td>2014-8-20</td>
<td>北京邮电大学</td>
<td>2017-7-14</td>
</tr>
<tr>
<td>176</td>
<td>一种异构链路多协议的自动识别系统和方法</td>
<td>胡鹤飞,袁东明,冉静,刘元安</td>
<td>ZL 2014 1 0421079.5</td>
<td>2014-8-25</td>
<td>北京邮电大学</td>
<td>2017-8-15</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>177</td>
<td>一种用于 LTE 系统的耦合线宽带移相器</td>
<td>吴永乐，刘元安，周思明，黎淑兰，于翠屏，周润民，苏明</td>
<td>ZL 2014 1 0426042.1</td>
<td>2014-8-26</td>
<td>北京邮电大学</td>
<td>2017-2-15</td>
</tr>
<tr>
<td>178</td>
<td>一种 3D-MIMO 系统的波束赋形实现方法</td>
<td>邓侃，邓斌，赵龙，张玉艳</td>
<td>ZL 2014 1 0427629.4</td>
<td>2014-8-27</td>
<td>北京邮电大学</td>
<td>2017-8-11</td>
</tr>
<tr>
<td>179</td>
<td>模式相关损耗和偏振相关损耗的联合补偿方法及装置</td>
<td>高冠军，张杰，赵永利，杨辉</td>
<td>ZL 2014 1 0432675.3</td>
<td>2014-8-28</td>
<td>北京邮电大学</td>
<td>2017-1-4</td>
</tr>
<tr>
<td>180</td>
<td>光网络低时延故障恢复方法及系统</td>
<td>杨辉，张杰，赵永利，高冠军</td>
<td>ZL 2014 1 0433357.9</td>
<td>2014-8-28</td>
<td>北京邮电大学</td>
<td>2017-1-4</td>
</tr>
<tr>
<td>181</td>
<td>一种噪声方差未知情况下的频谱检测方法与装置</td>
<td>李斌，孙梦巍，田铁红，赵成林，许方敏</td>
<td>ZL 2014 1 0432678.7</td>
<td>2014-8-28</td>
<td>北京邮电大学</td>
<td>2017-6-23</td>
</tr>
<tr>
<td>182</td>
<td>一种噪声方差未知情况下的频谱检测方法与装置</td>
<td>杨辉，张杰，赵永利，高冠军</td>
<td>ZL 2014 1 0432931.9</td>
<td>2014-8-28</td>
<td>北京邮电大学</td>
<td>2017-8-22</td>
</tr>
<tr>
<td>183</td>
<td>基于硬件的交换系统公平性轮转输出的调度方法</td>
<td>袁东明，胡鹤飞，冉静，刘凯明，刘元安，李宏伟，杨学斌，郭富豪，赵世功</td>
<td>ZL 2014 1 0448424.4</td>
<td>2014-9-4</td>
<td>北京邮电大学</td>
<td>2017-3-29</td>
</tr>
<tr>
<td>184</td>
<td>基于硬件的交换系统公平性轮转输出的调度方法</td>
<td>马华东，高一鸿，张海涛，丁鸿凯，赵纯</td>
<td>ZL 2014 1 0452173.7</td>
<td>2014-9-5</td>
<td>北京邮电大学</td>
<td>2017-7-28</td>
</tr>
<tr>
<td>185</td>
<td>D2D 用户链接与蜂窝用户共享资源的分配方法、装置及系统</td>
<td>王莉，刘洋，吴华清，宋梅，张勇，滕颖雷，满毅，魏冀飞，田飞</td>
<td>ZL 2014 1 0455447.8</td>
<td>2014-9-9</td>
<td>北京邮电大学</td>
<td>2017-10-27</td>
</tr>
<tr>
<td>186</td>
<td>一种基于移动用户大数据异常行为可视化的监控方法</td>
<td>廖建新，王玉龙，李曲，王超芸，彭刚，徐童，张磊，张乐剑</td>
<td>ZL 2014 1 0465378.9</td>
<td>2014-9-12</td>
<td>北京邮电大学</td>
<td>2017-2-15</td>
</tr>
<tr>
<td>187</td>
<td>一种基于照明光源和 WiFi 信号的混合模式室内定位系统</td>
<td>赵啸宇，马占宇</td>
<td>ZL 2014 1 0472019.6</td>
<td>2014-9-16</td>
<td>北京邮电大学</td>
<td>2017-10-20</td>
</tr>
<tr>
<td>188</td>
<td>一种频谱检测方法及其装置</td>
<td>张轶凡，冯志勇，杨建，田玉成，付振，宋清华，黄赛</td>
<td>ZL 2014 1 0474596.9</td>
<td>2014-9-17</td>
<td>北京邮电大学</td>
<td>2017-5-17</td>
</tr>
<tr>
<td>189</td>
<td>一种两小区多用户两跳网络下收发机的数据传输方法</td>
<td>李立华，靳进，苏鑫，田辉</td>
<td>ZL 2014 1 0473162.7</td>
<td>2014-9-17</td>
<td>北京邮电大学</td>
<td>2017-10-31</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>-----------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>--------------------------------</td>
<td>------------</td>
</tr>
<tr>
<td>190</td>
<td>一种多输入多输出 MIMO 解调的空时优化方法及系统</td>
<td>张铁凡，高 谦</td>
<td>ZL 2014 1 0478931.2</td>
<td>2014-9-18</td>
<td>北京邮电大学</td>
<td>2017-6-23</td>
</tr>
<tr>
<td>191</td>
<td>基站资源池物理层算法封装方案的性能统计评估方法</td>
<td>漆 渊，钱荣荣，彭 淳，张 莉，王文博</td>
<td>ZL 2014 1 0478570.1</td>
<td>2014-9-18</td>
<td>北京邮电大学</td>
<td>2017-9-18</td>
</tr>
<tr>
<td>192</td>
<td>一种基于动态压缩感知的信道估计方法</td>
<td>祁国耀，陶小峰，陈保豪，杨 帆</td>
<td>ZL 2014 1 0496061.1</td>
<td>2014-9-24</td>
<td>北京邮电大学</td>
<td>2017-11-3</td>
</tr>
<tr>
<td>193</td>
<td>基于业务类型的物联接入请求汇聚方法</td>
<td>许方敏，赵成林，仇 超，李 斌</td>
<td>ZL 2014 1 0495158.0</td>
<td>2014-9-25</td>
<td>北京邮电大学</td>
<td>2017-11-14</td>
</tr>
<tr>
<td>194</td>
<td>基于路径度量值的低复杂度 MIMO 系统信道化信号检测方法</td>
<td>牛 凯，戴金晟</td>
<td>ZL 2014 1 0497917.7</td>
<td>2014-9-25</td>
<td>北京邮电大学</td>
<td>2017-8-8</td>
</tr>
<tr>
<td>195</td>
<td>一种有源天线垂直小区分裂的天线方向图优化方法</td>
<td>祁国耀，陶小峰，王 健，刘 贺</td>
<td>ZL 2014 1 0521131.4</td>
<td>2014-9-30</td>
<td>北京邮电大学</td>
<td>2017-4-26</td>
</tr>
<tr>
<td>196</td>
<td>一种面向内容的网络缓存方法</td>
<td>张天魁，周 乐，许晓晓，罗 欢</td>
<td>ZL 2014 1 0526621.3</td>
<td>2014-10-8</td>
<td>无锡北邮感知技术研究院有限公司，北京邮电大学</td>
<td>2017-11-10</td>
</tr>
<tr>
<td>197</td>
<td>一种面向内容的网络内容获取方法</td>
<td>张天魁，周 乐，许晓晓，罗 欢</td>
<td>ZL 2014 1 0526474.X</td>
<td>2014-10-8</td>
<td>无锡北邮感知技术产业研究院有限公司，北京邮电大学</td>
<td>2017-7-18</td>
</tr>
<tr>
<td>198</td>
<td>一种基于 Smith 圆圆的多频匹配系统</td>
<td>于翠屏，范明爽，刘元安，杨乾坤，黎淑兰，苏 明，王卫民</td>
<td>ZL 2014 1 0547005.6</td>
<td>2014-10-16</td>
<td>北京邮电大学</td>
<td>2017-10-3</td>
</tr>
<tr>
<td>199</td>
<td>基于迭代的区间运算的软件测试用例自动生成方法及系统</td>
<td>王复文，邢 颖，宫云战，张旭舟，黄俊飞，金大海</td>
<td>ZL 2014 1 0562727.9</td>
<td>2014-10-21</td>
<td>北京邮电大学</td>
<td>2017-6-13</td>
</tr>
<tr>
<td>200</td>
<td>一种故障确认方法及其系统</td>
<td>金大海，甄 淳，宫云战，王复文，黄俊飞</td>
<td>ZL 2014 1 0564479.1</td>
<td>2014-10-21</td>
<td>北京邮电大学</td>
<td>2017-10-20</td>
</tr>
<tr>
<td>201</td>
<td>支持内容中心网络的 Web 服务器系统及处理方法</td>
<td>乔秀全，南国顺，郭 洁，陈俊亮，涂春辉</td>
<td>ZL 2014 1 0563488.9</td>
<td>2014-10-21</td>
<td>北京邮电大学</td>
<td>2017-10-20</td>
</tr>
<tr>
<td>202</td>
<td>一种移动通信网的负载均衡方法及系统</td>
<td>李志文，喻 鹏，周凡兴，丰 雷，邱雪松</td>
<td>ZL 2014 1 0589813.9</td>
<td>2014-10-28</td>
<td>北京邮电大学</td>
<td>2017-9-19</td>
</tr>
<tr>
<td>203</td>
<td>一种异构网络的干扰管理方法及装置</td>
<td>张天魁，牛 勤，胡志磊</td>
<td>ZL 2014 1 0599088.3</td>
<td>2014-10-30</td>
<td>无锡北邮感知技术研究院有限公司，北京邮电大学</td>
<td>2017-8-4</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>-------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>204</td>
<td>一种毫米波空间调制方法与联合编码装置</td>
<td>李斌,林学彬,赵成林,许方敏</td>
<td>ZL 2014 1 0613737.0</td>
<td>2014-11-4</td>
<td>北京邮电大学</td>
<td>2017-11-10</td>
</tr>
<tr>
<td>205</td>
<td>一种交通场景下视频数据的校正方法</td>
<td>马华东,赵晓萌,张海涛,唐毅,付广平</td>
<td>ZL 2014 1 0638356.8</td>
<td>2014-11-7</td>
<td>北京邮电大学</td>
<td>2017-9-29</td>
</tr>
<tr>
<td>206</td>
<td>一种室内可见光通信的通信速率优化方案</td>
<td>李立华,张平,丁颖睿</td>
<td>ZL 2014 1 0645263.8</td>
<td>2014-11-10</td>
<td>北京邮电大学</td>
<td>2017-6-23</td>
</tr>
<tr>
<td>207</td>
<td>基于证据筛选的虚拟网络故障诊断方法及装置</td>
<td>王颖,李文璟,王昊,邱雪松,芮兰兰</td>
<td>ZL 2014 1 0641874.5</td>
<td>2014-11-13</td>
<td>北京邮电大学</td>
<td>2017-12-5</td>
</tr>
<tr>
<td>208</td>
<td>一种钙钛矿纳米线混合型太阳能电池及其制备方法</td>
<td>陈鑫,张霞,吴瑶,王思佳,张辰,任晓敏</td>
<td>ZL 2014 1 0650540.4</td>
<td>2014-11-14</td>
<td>北京邮电大学</td>
<td>2017-2-22</td>
</tr>
<tr>
<td>209</td>
<td>基于数据离散度无关性数据立方体构建方法</td>
<td>高志鹏,李栋,邱雪松,李文璟,孟洛明,杨杨</td>
<td>ZL 2014 1 0653393.6</td>
<td>2014-11-17</td>
<td>北京邮电大学</td>
<td>2017-8-25</td>
</tr>
<tr>
<td>210</td>
<td>一种基于量子蛙跳的频谱感知算法</td>
<td>张勇,宋梅,魏翼飞,滕颖睿,郭达,王莉,张辰,任晓敏</td>
<td>ZL 2014 1 0659258.2</td>
<td>2014-11-18</td>
<td>北京邮电大学</td>
<td>2017-2-22</td>
</tr>
<tr>
<td>211</td>
<td>一种用于双频毫米波系统的平面天线</td>
<td>吴永乐,刘元安,曲美君,王卫民,于翠屏</td>
<td>ZL 2014 1 0674715.5</td>
<td>2014-11-21</td>
<td>北京邮电大学</td>
<td>2017-2-22</td>
</tr>
<tr>
<td>212</td>
<td>一种面向异构存储的适配装置</td>
<td>林荣恒,傅荣蓉,赵耀,邹华,杨成春,陶鑫,黄信力,王鹏,徐涛,郑海敏,黄兵,于婧</td>
<td>ZL 2014 1 0674714.0</td>
<td>2014-11-21</td>
<td>北京邮电大学</td>
<td>2017-10-20</td>
</tr>
<tr>
<td>213</td>
<td>异构网络多基站节能管理方法</td>
<td>高志鹏,李文璟,李子凡,丰雷,王颖</td>
<td>ZL 2014 1 0691145.0</td>
<td>2014-11-26</td>
<td>北京邮电大学</td>
<td>2017-10-31</td>
</tr>
<tr>
<td>214</td>
<td>基于无线电信号频谱特征模板的信号识别方法及系统</td>
<td>张奇勋,冯志勇,王宝聪,王宝聪,高超</td>
<td>ZL 2014 1 0691034.X</td>
<td>2014-11-26</td>
<td>北京邮电大学</td>
<td>2017-4-19</td>
</tr>
<tr>
<td>215</td>
<td>基带资源池中的上行信道数据处理方法</td>
<td>梁渊,钱荣荣,高波,王文博</td>
<td>ZL 2014 1 0691190.6</td>
<td>2014-11-26</td>
<td>北京邮电大学</td>
<td>2017-9-22</td>
</tr>
<tr>
<td>216</td>
<td>一种用于无线携能通信系统最大化和速率预编码方法</td>
<td>高晖,吕铁军,岳朝辉</td>
<td>ZL 2014 1 0692585.8</td>
<td>2014-11-26</td>
<td>北京邮电大学</td>
<td>2017-12-05</td>
</tr>
<tr>
<td>217</td>
<td>一种基站资源池中的资源迁移方法和装置</td>
<td>梁渊,钱荣荣,高波,沈涛,王文博</td>
<td>ZL 2014 1 0698730.3</td>
<td>2014-11-27</td>
<td>北京邮电大学</td>
<td>2017-8-15</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>-----</td>
<td>---</td>
<td>----------------------</td>
<td>----------------</td>
<td>------------</td>
<td>-----------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>218</td>
<td>一种基于比特重要性的功率分配方法及装置</td>
<td>张志龙, 刘丹谱, 尹长川, 郝建军, 罗涛, 李剑峰</td>
<td>ZL 2014 1 0710167.7</td>
<td>2014-11-27</td>
<td>北京邮电大学</td>
<td>2017-10-10</td>
</tr>
<tr>
<td>219</td>
<td>一种 HTTP 视频流调度方法及装置</td>
<td>白艺奇, 刘丹谱, 张志龙, 尹长川, 郝建军, 罗涛, 李剑峰</td>
<td>ZL 2014 1 0706072.8</td>
<td>2014-11-27</td>
<td>北京邮电大学</td>
<td>2017-10-27</td>
</tr>
<tr>
<td>220</td>
<td>航天电磁空间频谱态势构建方法及系统</td>
<td>张奇勋, 冯志勇, 高超, 王宝聪</td>
<td>ZL 2014 1 0712671.0</td>
<td>2014-11-28</td>
<td>北京邮电大学</td>
<td>2017-1-4</td>
</tr>
<tr>
<td>221</td>
<td>一种基于等效质量的空间机械臂连续碰撞动力学建模方法</td>
<td>贾庆轩, 张龙, 孙汉旭</td>
<td>ZL 2014 1 0720359.6</td>
<td>2014-12-1</td>
<td>北京邮电大学</td>
<td>2017-6-23</td>
</tr>
<tr>
<td>222</td>
<td>一种基于微重力模拟系统的空间机械臂碰撞算法验证方法</td>
<td>陈钢, 贾庆轩, 张龙, 孙汉旭</td>
<td>ZL 2014 1 0720257.4</td>
<td>2014-12-20</td>
<td>北京邮电大学</td>
<td>2017-3-10</td>
</tr>
<tr>
<td>223</td>
<td>一种静态缺陷检测方法及系统</td>
<td>黄俊飞, 张大林, 金大海, 宫云战, 王雅文</td>
<td>ZL 2014 1 0736842.3</td>
<td>2014-12-5</td>
<td>北京邮电大学</td>
<td>2017-6-16</td>
</tr>
<tr>
<td>224</td>
<td>一种基于用户行为的推荐方法</td>
<td>董枫, 李祺, 李承泽, 张程鹏, 胡阳雨</td>
<td>ZL 2014 1 0748932.4</td>
<td>2014-12-9</td>
<td>北京邮电大学</td>
<td>2017-5-10</td>
</tr>
<tr>
<td>225</td>
<td>一种可见光通信接收信号功率优化方法与装置</td>
<td>田辉, 张平, 姚中强, 范博</td>
<td>ZL 2014 1 0773262.1</td>
<td>2014-12-12</td>
<td>北京邮电大学</td>
<td>2017-7-28</td>
</tr>
<tr>
<td>226</td>
<td>一种基于线性模型的全双工自干扰信号消除方法及系统</td>
<td>于翠屏, 韩明超, 吴永乐, 刘元安</td>
<td>ZL 2014 1 0779315.0</td>
<td>2014-12-15</td>
<td>北京邮电大学</td>
<td>2017-2-22</td>
</tr>
<tr>
<td>227</td>
<td>一种基于时延消息模式实现综合质量化应用的系统及方法</td>
<td>徐鹏, 苏森, 双锴, 陈喆, 王玉龙</td>
<td>ZL 2014 1 0785541.X</td>
<td>2014-12-17</td>
<td>北京邮电大学</td>
<td>2017-10-13</td>
</tr>
<tr>
<td>228</td>
<td>一种基于图像的特征点的检测方法</td>
<td>李睿凡, 芦效峰, 鲁鹏, 冯方向, 李蕾, 刘咏彬, 刘小捷</td>
<td>ZL 2014 1 0797791.5</td>
<td>2014-12-18</td>
<td>北京邮电大学</td>
<td>2017-12-5</td>
</tr>
<tr>
<td>229</td>
<td>一种基于深层信念网络的跨模态检索方法</td>
<td>胡阳雨, 徐国爱, 李承泽, 张程鹏, 董枫</td>
<td>ZL 2014 1 0806446.3</td>
<td>2014-12-22</td>
<td>北京邮电大学</td>
<td>2017-9-29</td>
</tr>
<tr>
<td>230</td>
<td>一种大规模天线系统的有限反馈方法及装置</td>
<td>张天魁, 葛安盟, 牛勤, 刘志蕊</td>
<td>ZL 2014 1 0817814.4</td>
<td>2014-12-24</td>
<td>北京邮电大学</td>
<td>2017-11-3</td>
</tr>
<tr>
<td>231</td>
<td>一种大规模天线系统的有限反馈方法及装置</td>
<td>刘芳芳, 赵闻, 冯春燕</td>
<td>ZL 2014 1 0822403.4</td>
<td>2014-12-25</td>
<td>北京邮电大学</td>
<td>2017-3-22</td>
</tr>
<tr>
<td>232</td>
<td>一种基于正交极化传输的OFDM系统相关参数计算方法</td>
<td>明鹏飞, 普勇, 刘芳芳, 郭彩丽</td>
<td>ZL 2014 1 0828035.4</td>
<td>2014-12-25</td>
<td>北京邮电大学</td>
<td>2017-10-10</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>-------------------------</td>
<td>-----------------------------</td>
<td>------------</td>
<td>---------------</td>
<td>------------</td>
</tr>
<tr>
<td>233</td>
<td>一种基于事件的工作流间协作的系统及方法</td>
<td>吴步丹, 林荣恒, 刘博超, 陈俊亮</td>
<td>ZL 2014 1 0832067.1</td>
<td>2014-12-26</td>
<td>北京邮电大学</td>
<td>2017-10-20</td>
</tr>
<tr>
<td>234</td>
<td>一种光链路线性化方法</td>
<td>戴一堂, 徐坤, 梁晓东, 尹飞飞, 李建强</td>
<td>ZL 2014 1 0840839.6</td>
<td>2014-12-30</td>
<td>北京邮电大学</td>
<td>2017-4-19</td>
</tr>
<tr>
<td>235</td>
<td>一种三维模型实时绘制与比对方法</td>
<td>桑新柱, 邢树军, 于继博, 颜均均, 陈锋, 王鹏, 李晨雨, 苑金辉, 王慕如, 余重秀</td>
<td>ZL 2014 1 0856569.8</td>
<td>2014-12-31</td>
<td>北京邮电大学</td>
<td>2017-8-11</td>
</tr>
<tr>
<td>236</td>
<td>一种视频监控方法</td>
<td>桑新柱, 邢树军, 于继博, 颜均均, 陈锋, 王鹏, 李晨雨, 苑金辉, 王慕如, 余重秀</td>
<td>ZL 2014 1 0854207.5</td>
<td>2014-12-31</td>
<td>北京邮电大学</td>
<td>2017-10-17</td>
</tr>
<tr>
<td>237</td>
<td>基于蚁群算法的电力通信网线路优化方法及装置</td>
<td>亓峰, 郭少勇, 付宁, 焦阳, 魏伟, 邱雪松, 陈双双, 唐晓璇</td>
<td>ZL 2014 1 0851070.8</td>
<td>2014-12-31</td>
<td>北京邮电大学, 国家电网公司</td>
<td>2017-9-19</td>
</tr>
<tr>
<td>238</td>
<td>一种可执行应用的混淆方法和装置</td>
<td>李承泽, 李祺, 张程鹏, 董枫, 胡阳雨</td>
<td>ZL 2015 1 0005059.4</td>
<td>2015-1-6</td>
<td>北京邮电大学</td>
<td>2017-6-6</td>
</tr>
<tr>
<td>239</td>
<td>一种可执行应用的混淆方法和装置</td>
<td>李承泽, 张森, 张程鹏, 董枫, 胡阳雨</td>
<td>ZL 2015 1 0005064.5</td>
<td>2015-1-6</td>
<td>北京邮电大学</td>
<td>2017-9-8</td>
</tr>
<tr>
<td>240</td>
<td>一种任务分发方法和系统</td>
<td>翟毅东, 金跃辉, 张一文, 雷友鑫, 漆云涛, 陈莉萍, 杨文海, 李文韵</td>
<td>ZL 2015 1 0018653.7</td>
<td>2015-1-14</td>
<td>北京邮电大学</td>
<td>2017-7-14</td>
</tr>
<tr>
<td>241</td>
<td>一种基于通用处理器的 LDPC 编译码方法</td>
<td>牛凯, 贺志强, 张宽</td>
<td>ZL 2015 1 0026526.1</td>
<td>2015-1-20</td>
<td>北京邮电大学</td>
<td>2017-9-5</td>
</tr>
<tr>
<td>242</td>
<td>一种小型尘土颗粒筛选扬撒装置</td>
<td>周春琳, 刘凯, 孔志刚, 余杰, 李佳琪, 涂柏源, 马恬, 周杰</td>
<td>ZL 2015 1 0036111.2</td>
<td>2015-1-23</td>
<td>北京邮电大学</td>
<td>2017-1-11</td>
</tr>
<tr>
<td>244</td>
<td>一种变结构双态载人装置</td>
<td>郭磊, 李国明, 杜云霞, 任晓敏</td>
<td>ZL 2015 1 0062429.8</td>
<td>2015-2-6</td>
<td>北京邮电大学</td>
<td>2017-2-1</td>
</tr>
<tr>
<td>245</td>
<td>一种基于云计算的监控视频在线处理任务管理方法及系统</td>
<td>张海涛, 马华东, 高一鸣, 赵纯</td>
<td>ZL 2015 1 0065491.2</td>
<td>2015-2-9</td>
<td>北京邮电大学</td>
<td>2017-7-28</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>---</td>
<td>-------------------------</td>
<td>-------------------------</td>
<td>------------</td>
<td>-------------------</td>
<td>------------</td>
</tr>
<tr>
<td>247</td>
<td>一种自动扇区规划方法</td>
<td>阚 钢，高顺路，隋 静，马 林</td>
<td>ZL 2015 1 0069770.6</td>
<td>2015-2-10</td>
<td>北京邮电大学</td>
<td>2017-11-14</td>
</tr>
<tr>
<td>248</td>
<td>车辆故障警示机器人</td>
<td>唐 磊，宋 原，唐维征，王 豪，何 凯，吴新虎</td>
<td>ZL 2015 1 0076815.2</td>
<td>2015-2-12</td>
<td>北京邮电大学</td>
<td>2017-4-12</td>
</tr>
<tr>
<td>249</td>
<td>一种带宽分配方法、装置及光网络系统</td>
<td>张 民，杨 洋，蒋 俊，刘晶丹，张治国</td>
<td>ZL 2015 1 0100132.6</td>
<td>2015-3-6</td>
<td>北京邮电大学</td>
<td>2017-10-3</td>
</tr>
<tr>
<td>250</td>
<td>一种提高精度的基于频率调制的阵列角度估计方法</td>
<td>彭岳星，韩慧怡，赵 菊</td>
<td>ZL 2015 1 0141364.6</td>
<td>2015-3-27</td>
<td>北京邮电大学</td>
<td>2017-6-6</td>
</tr>
<tr>
<td>251</td>
<td>一种具有表面微化透光结构的 LED 芯片及其制作方法</td>
<td>刘 凯，任晓敏，黄永清，王 琦，段晓峰</td>
<td>ZL 2015 1 0189107.X</td>
<td>2015-4-21</td>
<td>北京邮电大学</td>
<td>2017-11-14</td>
</tr>
<tr>
<td>252</td>
<td>一种 zigbee 网络可见光定位无线充电系统与方法</td>
<td>刘元安，吴 帆，张洪光，田孝东，田碧华，范文浩</td>
<td>ZL 2015 1 0233839.4</td>
<td>2015-5-8</td>
<td>北京邮电大学</td>
<td>2017-5-10</td>
</tr>
<tr>
<td>253</td>
<td>一种微型贴膜系统及方法</td>
<td>刘鑫毅，曹德麟，侯晓晨，丁雪晴，马 华</td>
<td>ZL 2015 1 0236821.X</td>
<td>2015-5-11</td>
<td>北京邮电大学</td>
<td>2017-4-12</td>
</tr>
<tr>
<td>254</td>
<td>一种基于图像信息检测的天气识别方法及装置</td>
<td>马华东，傅慧源，张 征</td>
<td>ZL 2015 1 0247015.2</td>
<td>2015-5-14</td>
<td>北京邮电大学</td>
<td>2017-12-22</td>
</tr>
<tr>
<td>255</td>
<td>一种光传输过程中的模式转换方法及装置</td>
<td>邱吉芳，张道琳，伍 剑，田 野，王 越</td>
<td>ZL 2015 1 0250727.X</td>
<td>2015-5-15</td>
<td>北京邮电大学</td>
<td>2017-10-17</td>
</tr>
<tr>
<td>256</td>
<td>一种基于光子轨道角动量编码实现的高容量量子密钥共享方法</td>
<td>王 川，王铁军</td>
<td>ZL 2015 1 0250391.7</td>
<td>2015-5-15</td>
<td>北京邮电大学</td>
<td>2017-11-14</td>
</tr>
<tr>
<td>257</td>
<td>LDPC 码的译码器和译码方法</td>
<td>张锦南</td>
<td>ZL 2015 1 0278024.8</td>
<td>2015-5-27</td>
<td>北京邮电大学</td>
<td>2017-11-3</td>
</tr>
<tr>
<td>258</td>
<td>一种基于协作中继及频谱聚合的数据传输方法及装置</td>
<td>魏翼飞，张勇，龚 霞，宋 梅，马 越，王小军，战晓苏</td>
<td>ZL 2015 1 0309583.0</td>
<td>2015-6-8</td>
<td>北京邮电大学</td>
<td>2017-9-26</td>
</tr>
<tr>
<td>259</td>
<td>具有汇聚增强功能的矩阵型高密度光探测器及其制备方法</td>
<td>唐晓峰，周顾人，黄永清，黄文峰，刘 凯，任晓敏</td>
<td>ZL 2015 1 0319023.3</td>
<td>2015-6-11</td>
<td>北京邮电大学</td>
<td>2017-3-1</td>
</tr>
<tr>
<td>260</td>
<td>一种安全的多模式图像篡改检测方法及装置</td>
<td>唐云，王健南，王雅文，黄俊飞，金大海</td>
<td>ZL 2015 1 0325619.4</td>
<td>2015-6-12</td>
<td>北京邮电大学</td>
<td>2017-10-20</td>
</tr>
<tr>
<td>261</td>
<td>一种安全的主动式图像篡改检测方法及装置</td>
<td>唐 东，马华东，陈建伟，李天元</td>
<td>ZL 2015 1 0329688.2</td>
<td>2015-6-15</td>
<td>北京邮电大学</td>
<td>2017-10-3</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>262</td>
<td>多模图像配准方法</td>
<td>李永, 吴岳辛, 明悦, 徐良鹏, 王华, 余杭</td>
<td>ZL 2015 1 0345316.9</td>
<td>2015-6-19</td>
<td>北京邮电大学</td>
<td>2017-10-20</td>
</tr>
<tr>
<td>263</td>
<td>一种基于分布式网络实现图像内容快速检索的方法</td>
<td>廖建新, 王敬宇, 杨迪, 戚琦, 张成, 张乐剑</td>
<td>ZL 2015 1 0357412.5</td>
<td>2015-6-25</td>
<td>北京邮电大学</td>
<td>2017-12-29</td>
</tr>
<tr>
<td>264</td>
<td>一种 Android 应用程序安全风险评估方法与装置</td>
<td>刘元安, 范文浩, 余小秋, 吴帆, 张洪光</td>
<td>ZL 2015 1 0370083.8</td>
<td>2015-6-29</td>
<td>北京邮电大学</td>
<td>2017-11-10</td>
</tr>
<tr>
<td>265</td>
<td>一种图像显示方法及装置</td>
<td>于迅博, 颜芳, 范春华, 陈锐, 陈志东, 陈锋</td>
<td>ZL 2015 1 0374965.1</td>
<td>2015-7-1</td>
<td>北京邮电大学, 绍兴京华激光材料科技有限公司</td>
<td>2017-5-10</td>
</tr>
<tr>
<td>266</td>
<td>基于偏振调制器级联的 8 倍频光载毫米波产生方法和系统</td>
<td>马建新, 杨洋</td>
<td>ZL 2015 1 0398334.6</td>
<td>2015-7-8</td>
<td>北京邮电大学</td>
<td>2017-8-11</td>
</tr>
<tr>
<td>267</td>
<td>一种带宽分配方法及光接入网系统</td>
<td>张民, 刘晶丹, 聂海涛, 黎泽, 张治国</td>
<td>ZL 2015 1 0418961.9</td>
<td>2015-7-16</td>
<td>北京邮电大学</td>
<td>2017-12-22</td>
</tr>
<tr>
<td>268</td>
<td>光信号调制方法及装置、光信号解调方法及装置</td>
<td>刘博, 赵向东, 张丽佳, 张琦, 王拥军, 王伟, 赵光华, 田凤</td>
<td>ZL 2015 1 0522934.6</td>
<td>2015-8-24</td>
<td>北京邮电大学</td>
<td>2017-10-27</td>
</tr>
<tr>
<td>269</td>
<td>一种低功耗、零偏压单行裁流子光电探测器</td>
<td>黄永清, 姚嘉瑞, 卢兴升, 刘凯, 王俊, 任晓敏, 王琦, 陈世伟, 张霞</td>
<td>ZL 2015 1 0613957.8</td>
<td>2015-9-23</td>
<td>北京邮电大学</td>
<td>2017-3-29</td>
</tr>
<tr>
<td>270</td>
<td>一种基于粒子群算法的冗余度空间机械臂关节力矩优化方法</td>
<td>高欣, 杜明涛, 孙剑, 贾庆轩, 陈钢, 吴建新, 王一帆</td>
<td>ZL 2015 1 0653873.7</td>
<td>2015-10-10</td>
<td>北京邮电大学</td>
<td>2017-8-29</td>
</tr>
<tr>
<td>271</td>
<td>消除异构网络层间干扰的方法及装置</td>
<td>孙松林, 张丰晔, 田佳, 王玲, 马明</td>
<td>ZL 2015 1 0846497.3</td>
<td>2015-11-16</td>
<td>北京邮电大学</td>
<td>2017-11-28</td>
</tr>
<tr>
<td>272</td>
<td>一种空间机械臂关节参数对运输可靠性影响的确定方法</td>
<td>高健, 李光, 贾庆轩, 孙剑, 贺雯, 刘嘉骏</td>
<td>ZL 2015 1 0824620.1</td>
<td>2015-11-24</td>
<td>北京邮电大学</td>
<td>2017-11-21</td>
</tr>
<tr>
<td>273</td>
<td>基于量子点-双模腔耦合系统的全光逻辑器件</td>
<td>叶寒, 赵重远, 马中, 彭益伟, 张文, 刘玉敏</td>
<td>ZL 2015 1 0908554.6</td>
<td>2015-12-9</td>
<td>北京邮电大学</td>
<td>2017-12-15</td>
</tr>
<tr>
<td>274</td>
<td>一种室内可见光通信中节能照明的优化方法及装置</td>
<td>田辉, 张平, 范博, 姚中强</td>
<td>ZL 2016 1 0012046.4</td>
<td>2016-1-8</td>
<td>北京邮电大学</td>
<td>2017-12-22</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>--</td>
<td>---</td>
<td>-----------------------------</td>
<td>------------</td>
<td>------------</td>
<td>------------</td>
</tr>
<tr>
<td>275</td>
<td>一种充气式空间可展开装置的设计</td>
<td>宋江洲, 陈文杰, 孙艳旭, 王占鹏</td>
<td>ZL 2016 10012690.1</td>
<td>2016-1-11</td>
<td>北京邮电大学</td>
<td>2017-12-12</td>
</tr>
<tr>
<td>276</td>
<td>一种基于透明液晶的裸眼3D增强现实的方法及装置</td>
<td>桑新柱, 郭雨, 尹源源, 宋金辉, 王鹏, 陈锋, 于迅博, 王菊如</td>
<td>ZL 2016 10108401.8</td>
<td>2016-2-26</td>
<td>北京邮电大学</td>
<td>2017-10-27</td>
</tr>
<tr>
<td>277</td>
<td>一种基于碳纤维/石墨烯异质结构的紫外探测器及其制备方法</td>
<td>颜鑫, 张霞, 吴瑶, 任晓敏</td>
<td>ZL 2016 10111817.5</td>
<td>2016-2-29</td>
<td>北京邮电大学</td>
<td>2017-9-29</td>
</tr>
<tr>
<td>278</td>
<td>一种基于多频带分解的立体显示深度调整方法及装置</td>
<td>桑新柱, 王鹏, 林松, 郭雨, 陈锋, 于迅博, 陈志东, 崔焕, 孟侨, 颜玢玢, 宋金辉, 王如鹏</td>
<td>ZL 2016 10154603.6</td>
<td>2016-3-17</td>
<td>北京邮电大学</td>
<td>2017-11-10</td>
</tr>
<tr>
<td>279</td>
<td>信道仿真仪的输入数据矢量计算方法及装置</td>
<td>张建华, 刘萌萌, 王超, 闭宇铭, 张辰</td>
<td>ZL 2016 10214547.0</td>
<td>2016-4-7</td>
<td>北京邮电大学</td>
<td>2017-12-15</td>
</tr>
<tr>
<td>280</td>
<td>一种移动终端接入点预测装置</td>
<td>邓中亮, 魏浩, 甘俊, 郭旭兵</td>
<td>ZL 2016 10286392.1</td>
<td>2016-5-3</td>
<td>北京邮电大学</td>
<td>2017-11-10</td>
</tr>
<tr>
<td>281</td>
<td>一种收发一体的光电集成芯片</td>
<td>刘凯, 任晓敏, 黄永清, 王琦, 段晓峰</td>
<td>ZL 2016 10346546.1</td>
<td>2016-5-24</td>
<td>北京邮电大学</td>
<td>2017-7-4</td>
</tr>
<tr>
<td>282</td>
<td>一种太阳能电池、太阳电池的制备方法及装置</td>
<td>颜鑫, 张霞, 吴瑶, 卢启超, 任晓敏</td>
<td>ZL 2016 10460603.9</td>
<td>2016-6-22</td>
<td>北京邮电大学</td>
<td>2017-12-15</td>
</tr>
<tr>
<td>283</td>
<td>一种光栅参数输出的方法及装置</td>
<td>桑新柱, 刘立, 于迅博, 姚通, 刘博阳, 庞博, 颜玢玢</td>
<td>ZL 2016 10511455.9</td>
<td>2016-6-30</td>
<td>北京邮电大学</td>
<td>2017-10-27</td>
</tr>
<tr>
<td>284</td>
<td>一种移动终端接入点预测方法及装置</td>
<td>时岩, 陈山枝, 唐情, 黄翔</td>
<td>ZL 2016 11145085.8</td>
<td>2016-12-13</td>
<td>北京邮电大学</td>
<td>2017-12-12</td>
</tr>
<tr>
<td>285</td>
<td>一种永磁可调的超紧凑一维光子晶体波分解复用器</td>
<td>杨大全, 陈鑫, 王波, 石凯</td>
<td>ZL 2016 11250878.6</td>
<td>2016-12-30</td>
<td>北京邮电大学</td>
<td>2017-8-25</td>
</tr>
<tr>
<td>286</td>
<td>一种粮食颗粒导热速率测试装置</td>
<td>周晓光, 刘相东, 刘景云, 代爱妮, 张婷婷, 赵娜</td>
<td>ZL 2016 20840152.7</td>
<td>2016-8-4</td>
<td>北京邮电大学</td>
<td>2017-3-15</td>
</tr>
<tr>
<td>287</td>
<td>一种谷物湿度测试装置</td>
<td>周晓光, 刘相东, 刘景云, 代爱妮, 赵娜, 张婷婷</td>
<td>ZL 2016 20839637.4</td>
<td>2016-8-4</td>
<td>北京邮电大学</td>
<td>2017-3-15</td>
</tr>
<tr>
<td>288</td>
<td>一种用于乐谱图像识别的电子设备</td>
<td>宋晴, 杨录, 贺文赫, 王慧, 杨李怡, 刘小欧, 辛学仕, 陈海鹏, 杨敏, 赵佳男</td>
<td>ZL 2016 21090768.3</td>
<td>2016-9-28</td>
<td>北京邮电大学</td>
<td>2017-4-12</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>289</td>
<td>一种智能卡找回箱</td>
<td>宋晴,杨录,辛学佳,刘小欧,贾文赫,王智慧,杨李怡,陈海鹏,杨敏,姜佳男</td>
<td>ZL 2016 2 1088997.1</td>
<td>2016-9-28</td>
<td>北京邮电大学</td>
<td>2017-4-12</td>
</tr>
<tr>
<td>290</td>
<td>一款基于复合左右手材料的小型化双频WLAN天线</td>
<td>李秀萍,董亚文,朱华</td>
<td>ZL 2016 2 1121452.6</td>
<td>2016-10-14</td>
<td>北京邮电大学</td>
<td>2017-6-30</td>
</tr>
<tr>
<td>291</td>
<td>一种针对煤矿架空人车钢丝绳的局部损伤定量在线监测仪</td>
<td>刘晓平,王霄,常璐,马浩源,马植胜,张代富,陈宫,穆贵清,魏国庆</td>
<td>ZL 2016 2 1321031.8</td>
<td>2016-12-2</td>
<td>北京邮电大学</td>
<td>2017-5-24</td>
</tr>
<tr>
<td>292</td>
<td>一种电商平台网站数据保护系统</td>
<td>雷敏,王晓华</td>
<td>ZL 2016 2 1338030.4</td>
<td>2016-12-7</td>
<td>北京邮电大学</td>
<td>2017-6-6</td>
</tr>
<tr>
<td>293</td>
<td>一种多比特新型弯折无芯片标签结构</td>
<td>李秀萍,宋佳,朱华</td>
<td>ZL 2017 2 0027912.7</td>
<td>2017-1-11</td>
<td>北京邮电大学</td>
<td>2017-9-19</td>
</tr>
<tr>
<td>294</td>
<td>一种准互补型多比特无芯片标签结构</td>
<td>李秀萍,宋佳,朱华</td>
<td>ZL 2017 2 0028184.1</td>
<td>2017-1-11</td>
<td>北京邮电大学</td>
<td>2017-9-19</td>
</tr>
<tr>
<td>295</td>
<td>墙纸粘贴器</td>
<td>唐英杰,何江龙,于海军,秦莉,许飞</td>
<td>ZL 2017 2 0615723.1</td>
<td>2017-5-27</td>
<td>北京邮电大学</td>
<td>2017-12-22</td>
</tr>
<tr>
<td>296</td>
<td>投影系统</td>
<td>唐英杰,何江龙,尹凯莹,许飞,秦莉</td>
<td>ZL 2017 2 0615725.0</td>
<td>2017-5-27</td>
<td>北京邮电大学</td>
<td>2017-12-22</td>
</tr>
<tr>
<td>297</td>
<td>可折叠手机配件</td>
<td>高盟,高鸿</td>
<td>ZL 2017 3 0309926.3</td>
<td>2017-7-14</td>
<td>北京邮电大学</td>
<td>2017-12-22</td>
</tr>
<tr>
<td>298</td>
<td>手机配件</td>
<td>高盟,高鸿</td>
<td>ZL 2017 3 0309956.4</td>
<td>2017-7-14</td>
<td>北京邮电大学</td>
<td>2017-12-22</td>
</tr>
<tr>
<td>299</td>
<td>一种基于基站定位的D2D用户对复用蜂窝用户资源的方法</td>
<td>陈力,陈晓航,王彬,张欣,常永宇,杨大成</td>
<td>ZL 2011 1 0007220.3</td>
<td>2011-1-14</td>
<td>北京邮电大学</td>
<td>2016-12-14</td>
</tr>
<tr>
<td>300</td>
<td>图像匹配方法</td>
<td>桑新柱,李治,李倩,梅晓舟,李洋,颜芸,王英如,余重秀</td>
<td>ZL 2011 1 0175096.1</td>
<td>2011-6-27</td>
<td>北京邮电大学,北京蓝拓扑电子技术有限公司</td>
<td>2013-1-16</td>
</tr>
<tr>
<td>301</td>
<td>用于移动终端的屏幕图形自适应方法及系统</td>
<td>朱新宁,廖青,纪阳,张春红,马琳,矫艳梅</td>
<td>ZL 2012 1 0086395.2</td>
<td>2012-3-28</td>
<td>北京邮电大学</td>
<td>2015-12-16</td>
</tr>
<tr>
<td>302</td>
<td>一种一体化网络安全管理和装置</td>
<td>张宏伟,关建峰,许长桥,权伟,曹远龙,赵付涛,刘诗维,文新</td>
<td>ZL 2012 1 0141396.2</td>
<td>2012-5-8</td>
<td>北京邮电大学</td>
<td>2016-12-14</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>---------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>303</td>
<td>一种单镜头裸眼 3D 图像拍摄装置及方法</td>
<td>桑新柱，葛宏升，赵天奇，张颖，丁凌，张成浩，颜玢玢，王葵如</td>
<td>ZL 2012 1 0175462.8</td>
<td>2012-5-30</td>
<td>北京邮电大学，北京广卓能网络科技发展有限公司</td>
<td>2016-4-13</td>
</tr>
<tr>
<td>304</td>
<td>光调制系统及其方法</td>
<td>陈雪，石玥，刘岩，王立平，张治国</td>
<td>ZL 2016 1 0298971.X</td>
<td>2012-8-21</td>
<td>北京邮电大学</td>
<td>2016-11-16</td>
</tr>
<tr>
<td>305</td>
<td>基于中轨数据中继的分离模块化卫星系统和方法</td>
<td>张印，忻向军，王拥军，张丽佳，孟楠，李巍</td>
<td>ZL 2012 1 0438836.0</td>
<td>2012-11-7</td>
<td>北京邮电大学</td>
<td>2016-12-21</td>
</tr>
<tr>
<td>306</td>
<td>一种分布式无线感知反馈网络控制方法，系统及设备</td>
<td>孙岩，篱洁琼，罗红</td>
<td>ZL 2012 1 0468504.7</td>
<td>2012-11-19</td>
<td>北京邮电大学</td>
<td>2016-12-21</td>
</tr>
<tr>
<td>307</td>
<td>一种基于全光谱利用和后补偿技术的微波光子链路方法</td>
<td>周松，蒋天祥，李健，骆璐，张頔彬，谢倩</td>
<td>ZL 2012 1 0499741.X</td>
<td>2012-11-30</td>
<td>北京邮电大学</td>
<td>2016-12-21</td>
</tr>
<tr>
<td>308</td>
<td>一种信息借用方法</td>
<td>祁琪，张平，韩江，郭灵芝，陶小峰，许晓东</td>
<td>ZL 2012 1 0526586.6</td>
<td>2012-12-7</td>
<td>北京邮电大学</td>
<td>2016-12-21</td>
</tr>
<tr>
<td>309</td>
<td>多接入网络中的安全方法</td>
<td>李玉宏，段家琛，王海萌，杨晓亮，王文东，龚向阳，阙喜戎</td>
<td>ZL 2013 1 0185696.5</td>
<td>2013-5-17</td>
<td>北京邮电大学</td>
<td>2016-12-28</td>
</tr>
<tr>
<td>310</td>
<td>一种针对大数据率业务的资源调度方法</td>
<td>张玲，郑伟，赵君，路兆铭，温向明，谢元宝，王喜东，万齐文</td>
<td>ZL 2013 1 0219370.X</td>
<td>2013-6-4</td>
<td>北京邮电大学</td>
<td>2016-12-21</td>
</tr>
<tr>
<td>311</td>
<td>移动终端上 eID 身份认证的方法及系统</td>
<td>周熙，吴旭，袁玉宏，杨金翠，许晋，庞浩，范月</td>
<td>ZL 2013 1 0226357.7</td>
<td>2013-6-7</td>
<td>北京邮电大学</td>
<td>2016-5-18</td>
</tr>
<tr>
<td>312</td>
<td>用于动态网络环境的节点中心度的计算方法</td>
<td>马华东，袁培燕</td>
<td>ZL 2013 1 0238265.0</td>
<td>2013-6-17</td>
<td>北京邮电大学</td>
<td>2016-3-30</td>
</tr>
<tr>
<td>313</td>
<td>一种基于模糊滑模控制器的球形机器人坡面运动控制方法</td>
<td>孙汉旭，张延恒，贾庆轩，肖寒，张小飞，赵伟，于涛，褚明，陈刚</td>
<td>ZL 2013 1 0322138.9</td>
<td>2013-7-29</td>
<td>北京邮电大学</td>
<td>2016-12-7</td>
</tr>
<tr>
<td>314</td>
<td>分配小区载频数量的方法和装置</td>
<td>冯志勇，杨栋，刘庆，闵佳，袁凌武，张奇勋，张铁凡</td>
<td>ZL 2013 1 0334827.1</td>
<td>2013-8-2</td>
<td>北京邮电大学</td>
<td>2016-12-28</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>-----</td>
<td>--</td>
<td>----------------------------------</td>
<td>-----------------</td>
<td>--------------</td>
<td>------------------</td>
<td>--------------</td>
</tr>
<tr>
<td>315</td>
<td>一种支持无缝切换的双系统终端</td>
<td>方洪兴，袁玉宇，张天乐，吕铁军，陆明月，张 熙</td>
<td>ZL 2013 1 0342622.8</td>
<td>2013-8-8</td>
<td>北京邮电大学</td>
<td>2015-7-8</td>
</tr>
<tr>
<td>316</td>
<td>一种新型的基于 LDPC 的混合型 Turbo 结构码的编、译码方法</td>
<td>刘 博，忻向军，张丽佳，王拥军，张 琼，尹霄丽，钟佩玲，胡善亨，田清华</td>
<td>ZL 2013 1 0358849.1</td>
<td>2013-8-16</td>
<td>北京邮电大学</td>
<td>2016-12-28</td>
</tr>
<tr>
<td>317</td>
<td>基于事件对文件进行管理的操作系统的工作方法</td>
<td>林荣恒，赵 耀，邹 华，谢志伟，杨放春，吕文博，华 字，张 晋，田清华</td>
<td>ZL 2013 1 0366018.9</td>
<td>2013-8-21</td>
<td>北京邮电大学</td>
<td>2016-8-17</td>
</tr>
<tr>
<td>318</td>
<td>分配资源的方法和装置</td>
<td>祁琪琲，陶小峰，韩 江，杨程程，刘小明</td>
<td>ZL 2013 1 0376956.7</td>
<td>2013-8-26</td>
<td>北京邮电大学</td>
<td>2016-8-24</td>
</tr>
<tr>
<td>319</td>
<td>一种基于伪随机数的网络无向通信模拟方法</td>
<td>姚文斌，韩 司，杨 瑞，贾 晋</td>
<td>ZL 2013 1 0395276.X</td>
<td>2013-9-3</td>
<td>北京邮电大学</td>
<td>2016-11-30</td>
</tr>
<tr>
<td>320</td>
<td>一种宽带单极子手机天线</td>
<td>姚 远，何乃潇，俞俊生，陈晓东，刘小明</td>
<td>ZL 2013 1 0631476.0</td>
<td>2013-11-29</td>
<td>北京邮电大学</td>
<td>2016-4-20</td>
</tr>
<tr>
<td>321</td>
<td>一种光网络的扩容方法</td>
<td>李 慧，苏 阳，纪越峰</td>
<td>ZL 2013 1 0664621.5</td>
<td>2013-12-10</td>
<td>北京邮电大学</td>
<td>2016-12-7</td>
</tr>
<tr>
<td>322</td>
<td>一种增设缓存集群的视频数据中心及其缓存资源调度方法</td>
<td>马华东，高一鸿，张海涛，魏文华，黄 瀚，丁鸿凯</td>
<td>ZL 2013 1 0697540.5</td>
<td>2013-12-18</td>
<td>北京邮电大学</td>
<td>2016-8-17</td>
</tr>
<tr>
<td>323</td>
<td>一种合成三维图像的方法</td>
<td>桑新柱，蔡克发，陈 铎，于迅博，邢树军</td>
<td>ZL 2013 1 0723524.9</td>
<td>2013-12-24</td>
<td>北京邮电大学</td>
<td>2016-1-20</td>
</tr>
<tr>
<td>324</td>
<td>LED 显示器 3D 显示方法</td>
<td>桑新柱，孙 蕾，于迅博，高 鑫，王 鹏</td>
<td>ZL 2013 1 0723035.3</td>
<td>2013-12-24</td>
<td>北京邮电大学</td>
<td>2016-2-3</td>
</tr>
<tr>
<td>325</td>
<td>一种 LED 三维显示屏和一种视差图像的填充方法</td>
<td>桑新柱，于迅博，孙 蕾，高 鑫，王 鹏</td>
<td>ZL 2013 1 0722988.8</td>
<td>2013-12-24</td>
<td>北京邮电大学</td>
<td>2016-2-3</td>
</tr>
<tr>
<td>326</td>
<td>3D 投影方法</td>
<td>桑新柱，陈志东，邢树军，于迅博</td>
<td>ZL 2013 1 0723627.5</td>
<td>2013-12-24</td>
<td>北京邮电大学</td>
<td>2016-2-8</td>
</tr>
<tr>
<td>327</td>
<td>3D 显示方法及装置</td>
<td>桑新柱，赵天奇，于迅博，高 鑫，孙 蕾，王 鹏</td>
<td>ZL 2013 1 0722976.5</td>
<td>2013-12-24</td>
<td>北京邮电大学</td>
<td>2016-7-6</td>
</tr>
<tr>
<td>328</td>
<td>异常行为检测方法和装置</td>
<td>徐悦，范春晓，吴岳辛，贾 智，徐伟林</td>
<td>ZL 2013 1 0753341.1</td>
<td>2013-12-31</td>
<td>北京邮电大学</td>
<td>2016-12-7</td>
</tr>
<tr>
<td>序号</td>
<td>专利名称</td>
<td>发明人</td>
<td>专利号</td>
<td>专利申请日</td>
<td>专利权人</td>
<td>授权公告日</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>--------</td>
<td>--------</td>
<td>------------</td>
<td>----------</td>
<td>------------</td>
</tr>
<tr>
<td>329</td>
<td>多视角投影与三维注册联合的手绘场景三维建模方法</td>
<td>马华东，刘亮，卢大玮，刘安尔</td>
<td>ZL 2014 1 0026189.1</td>
<td>2014-1-21</td>
<td>北京邮电大学</td>
<td>2016-8-24</td>
</tr>
<tr>
<td>330</td>
<td>一种数字分层的三维显示方法及装置</td>
<td>桑新柱，于迅博，高鑫，赵天奇，王鹏，颜玢玢，苑金辉，王葵如，余重秀</td>
<td>ZL 2014 1 0440064.3</td>
<td>2014-9-1</td>
<td>北京邮电大学</td>
<td>2016-4-20</td>
</tr>
<tr>
<td>331</td>
<td>一种裸眼三维立体显示的深度控制方法</td>
<td>桑新柱，郭南，于迅博，颜玢玢，陈锋，王鹏，颜玢玢，张显廷，苑金辉，王葵如，余重秀</td>
<td>ZL 2014 1 0737620.3</td>
<td>2014-12-4</td>
<td>北京邮电大学</td>
<td>2016-8-17</td>
</tr>
<tr>
<td>332</td>
<td>基于深度信息的三维场景增强实现的方法及系统</td>
<td>桑新柱，郭南，于迅博，颜玢玢，陈锋，王鹏，颜玢玢，解松霖，苑金辉，王葵如，余重秀</td>
<td>ZL 2014 1 0778799.7</td>
<td>2014-12-15</td>
<td>北京邮电大学</td>
<td>2016-10-5</td>
</tr>
<tr>
<td>333</td>
<td>基于体布拉格光栅的全视角三维显示系统及方法</td>
<td>桑新柱，高鑫，于迅博，颜玢玢，陈锋，王鹏，颜玢玢，陈志东，苑金辉，王葵如，余重秀</td>
<td>ZL 2014 1 0785174.3</td>
<td>2014-12-16</td>
<td>北京邮电大学</td>
<td>2016-8-17</td>
</tr>
<tr>
<td>334</td>
<td>基于模板特征点及其拓扑结构的多币种面值识别方法</td>
<td>赵衍运，李澜博，庄伯金，赵志诚，苏菲</td>
<td>ZL 2014 1 0837446.X</td>
<td>2014-12-29</td>
<td>北京邮电大学</td>
<td>2016-10-5</td>
</tr>
<tr>
<td>335</td>
<td>一种基于非视觉感知信息的目标定位方法及装置</td>
<td>马华东，赵东，秦通</td>
<td>ZL 2015 1 0325399.5</td>
<td>2015-6-12</td>
<td>北京邮电大学</td>
<td>2015-6-12</td>
</tr>
<tr>
<td>337</td>
<td>对流换热系数、对流传质系数测试装置</td>
<td>周晓光，王文媛，刘相东，刘景云</td>
<td>ZL 2015 2 0717609.0</td>
<td>2015-9-16</td>
<td>北京邮电大学</td>
<td>2016-1-13</td>
</tr>
</tbody>
</table>
2017 年发布我校 2016 年度发表论文检索收录情况

<table>
<thead>
<tr>
<th>年份</th>
<th>SCIE 论文数</th>
<th>高校排名</th>
<th>EI 论文数</th>
<th>高校排名</th>
<th>CPCI-S 论文数</th>
<th>高校排名</th>
<th>SSCI 论文数</th>
</tr>
</thead>
<tbody>
<tr>
<td>2017</td>
<td>953</td>
<td>68</td>
<td>1101</td>
<td>49</td>
<td>1010</td>
<td>9</td>
<td>20</td>
</tr>
</tbody>
</table>

2017 年度学术成果汇总表

<table>
<thead>
<tr>
<th>单位</th>
<th>单位总计</th>
<th>期刊</th>
<th>会议</th>
<th>专著</th>
</tr>
</thead>
<tbody>
<tr>
<td>信息与通信工程学院</td>
<td>1078</td>
<td>42</td>
<td>392</td>
<td>307</td>
</tr>
<tr>
<td>信息光子学与光通信研究院</td>
<td>411</td>
<td>10</td>
<td>159</td>
<td>149</td>
</tr>
<tr>
<td>电子工程学院</td>
<td>393</td>
<td>1</td>
<td>195</td>
<td>10</td>
</tr>
<tr>
<td>网络技术研究院</td>
<td>329</td>
<td>23</td>
<td>125</td>
<td>5</td>
</tr>
<tr>
<td>计算机学院</td>
<td>216</td>
<td>25</td>
<td>63</td>
<td>11</td>
</tr>
<tr>
<td>理学院</td>
<td>202</td>
<td>15</td>
<td>177</td>
<td>0</td>
</tr>
<tr>
<td>经济管理学院</td>
<td>188</td>
<td>110</td>
<td>27</td>
<td>13</td>
</tr>
<tr>
<td>网络空间安全学院</td>
<td>128</td>
<td>62</td>
<td>15</td>
<td>30</td>
</tr>
<tr>
<td>人文学院</td>
<td>96</td>
<td>34</td>
<td>5</td>
<td>19</td>
</tr>
<tr>
<td>自动化学院</td>
<td>86</td>
<td>19</td>
<td>18</td>
<td>7</td>
</tr>
<tr>
<td>数字媒体与设计艺术学院</td>
<td>37</td>
<td>16</td>
<td>9</td>
<td>0</td>
</tr>
<tr>
<td>软件学院</td>
<td>34</td>
<td>5</td>
<td>10</td>
<td>11</td>
</tr>
<tr>
<td>民族教育学院</td>
<td>27</td>
<td>16</td>
<td>7</td>
<td>1</td>
</tr>
<tr>
<td>马克思主义学院</td>
<td>18</td>
<td>17</td>
<td>1</td>
<td>0</td>
</tr>
<tr>
<td>国际学院</td>
<td>17</td>
<td>2</td>
<td>3</td>
<td>10</td>
</tr>
<tr>
<td>网络教育学院</td>
<td>16</td>
<td>9</td>
<td>5</td>
<td>0</td>
</tr>
<tr>
<td>教务处</td>
<td>5</td>
<td>5</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>感知技术研究院</td>
<td>2</td>
<td>1</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>合计</td>
<td>3283</td>
<td>412</td>
<td>1211</td>
<td>573</td>
</tr>
</tbody>
</table>
新型光电子器件中的异质兼容集成
与功能微结构体系基础研究

研究单位：北京邮电大学
合作单位：清华大学，天津大学，南开大学，华南师范大学，武汉邮电科学研究院，中国电子科技集团公司第3研究所

项目负责人：任晓敏
项目组成员：任晓敏，张霞，黄永清，颜鑫，王琦，王俊，段晓峰，黄辉，桑新柱，苑金辉，尚玉峰，颜玢玢，余重秀，贾志刚，郭经纬，马文全，牛智川，胡明列，刘艳格，谢世钟

结题时间：2017年10月

该项目为国家重点基础研究发展计划“973计划”项目（项目编号：2010CB327600）。该项目围绕关键科学问题和预期目标，全面完成了研究任务。取得了重要的创新性成果如下：

1. 任晓敏教授提出了能级弥散的假设，建立了分数维度（或弥散）固体电子态新理论，该理论已被国际同行出版的专著引用推介并得到国际同行相关实验的支持。此外，提出了新颖的《弥聚子论》：基于能级弥散假设和与之协变的波函数空间聚敛假设，尝试性地将量子力学基本理论和经典力学拓展至全宇观范围，将狭义相对论拓展至全速域范围。任晓敏教授已就上述原创性理论在多次国际会议上作特邀报告，受到了学术界的关注。

2. 在新颖纳异质结构及器件的制备方面取得重大进展：首次制备出直径细至24 nm却仍具有纯闪锌矿结构的GaAs纳米线并据此改进了现有理论模型；实现了GaAs纳米线的室温单模激射和纳米线晶相的可控生长，并观察到了新颖的非线性现象；利用缓冲层首次在Si衬底上获得了无缺陷的纯闪锌矿结构GaAs纳米线；首次以直接外延方式在GaAs纳米线侧壁制备出In(Ga)As量子点，并测得室温PL谱及77K温度下的F-P腔谐振模式。

3. 在异质兼容光电子集成方面取得重要突破，GaAs/Si材料位错密度降低至104cm-2量级，并先后实现了GaAs基InP材料系半导体激光器的室温连续激射和Si基GaAs材料系半导体激光器的室温激射，为世界上已报道的少数同类实验结果之一。

4. 形成了光电子集成器件中重要基元功能微结构的制备工艺体系，包括复杂结构纳米光栅及其纳米压印制备、同质异隙波导结构对接、量子阱混杂工艺等。

5. 研究了微结构光纤制备的动力学机制，实现拉纤的精确控制：提出了新的脉冲动力学机制并实现了基于该机制的高性能微结构光纤飞秒激光振荡器（25 fs），利用非线性过程实现了多波长、宽调谐飞秒激光器。
半导体异质兼容集成中的高质量异变外延
与自组织纳异质结构

研究单位：北京邮电大学
合作单位：中国科学院半导体研究所
课题负责人：任晓敏，黄永清
课题成员：任晓敏，黄永清，颜鑫，张霞，王俊，段晓峰，王琦，黄辉，桑新柱，尚玉峰，蔡世伟，李小波，李军帅，魏巍，郭经纬，张旭，刘小龙，吕晓龙，王伟，范鑫烨，骆扬，胡劲华，房文敬，费嘉瑞，申冰，杨一粟，张明，马文全，牛智川

结题时间：2017年10月

该课题为重点基础研究发展计划“973计划”“新型光电子器件中的异质兼容集成与功能微结构体系基础研究”项目中的课题（课题编号：2010CB327601）。

近年来，该课题组全体研究人员全力以赴，全面完成了研究任务，取得了一系列重要进展，特别是在固体物理学和纳米异质结构物理学基本理论方面取得了重大突破。主要研究成果如下：

1.提出了能级弥散的假设，建立了分数维度（或弥散）固体电子态系新理论：该理论已被国际同行出版的专著引用推介并得到国际同行相关实验的支持。此外，提出了新颖的《弥散子论》：基于能级弥散假设和与之协变的波函数空间聚敛假设，尝试性地将量子力学基本理论和经典力学拓展至全宇观范围，将狭义相对论拓展至全速域范围。

2.在纳米异质结构及器件的制备方面取得重大进展：首次制备出直径细至24nm却仍具有纯闪锌矿结构的GaAs纳米线并据此改进了现有理论模型；实现了GaAs纳米线的室温单模激射和纳米线晶相的可控生长，并观察到了新颖的非线性现象；利用缓冲层首次在Si衬底上获得了无缺陷的纯闪锌矿结构GaAs纳米线；首次以直接外延方式在GaAs纳米线侧壁制备出In(Ga)As量子点，并测得室温PL谱及77K温度下的F-P腔谐振模式。

3.在异质兼容光电子集成方面取得重要突破：GaAs/Si材料位错密度降低至10^4cm^-2量级，并先后实现了GaAs基InP材料系半导体激光器的室温连续激射和Si基GaAs材料系半导体激光器的室温激射，为世界上已报道的少数同类实验结果之一。

智慧服务机理与理论

研究单位：北京邮电大学网络技术研究院
课题负责人：王敬宇
课题成员：王敬宇，廖建新，关建峰，徐童，吴步丹
结题时间：2017年7月

该课题为国家重点基础研究发展计划“973计划”“智慧协同网络理论基础研究”项目中的课题（课题编号2013CB329102）。

该课题对智慧服务层机理与理论进行了深入研究，初步确立了以服务标识及其映射机制为核心的智慧服务层总体框架。
智慧服务层的总体构架以智慧服务标识和服务行为表征为基础，包含服务资源的智慧查询与匹配、服务动态感知、服务聚合等三个重要功能，以及服务可信性保证机制。在该架构中，针对三层两域的新型网络结构，以及智慧服务映射的需求，设计了混合服务标识体系。针对类型繁多、内容各异的服务，提出了含有语义适配能力的服务智慧检索框架，支持多种服务内容的智慧查询与匹配。通过引入合作博弈模型，并充分考虑了服务节点的终端组件的移动性，使智慧服务层与网络组件层相互感知，实现了资源优化与流量优化。主要研究成果如下：
1. 建立了可分离、可表征、可演化的服务行为标识体系，为智慧协同网络的推广应用奠定了基础。
2. 解决了智慧服务存储、查询与匹配等关键问题，有利于智慧协同网络资源的科学优化。
3. 提出了可信可靠的服务需求感知、服务资源感知方法，为智慧服务与网络资源适配提供了有效途径。
4. 构建了海量服务数据分分析理论和模型，发现服务行为规律，为智慧服务提供和网络优化提供科学依据。

劳动者就业信息服务关键技术及服务模式研究

承担单位：北京邮电大学
合作单位：人力资源和社会保障部劳动科学研究所，人力资源和社会保障部信息中心
课题负责人：杨俊
课题组成员：杨俊，鄂海红，宋美娜，欧中洪，王晓晖，宋俊德，任文慧，常豆，李玉省，郑聪，潘吴，郑苗，李者，田鹏程，张莉梅
结题时间：2017年10月

该课题为国家科技支撑计划项目“劳动者全生命周期的就业信息服务系统及应用示范”中的课题（课题编号：2013BAH10F1）。该课题针对劳动者就业服务信息结构多元化、内容结构化和位置分散化等特点，开发完成劳动者就业服务数据处理中间件，包括异构数据服务集成构件集、动态数据存储构件集、结构化就业信息数据共享引擎、数据资源安全保障构件集。主要研究成果如下：
1. 针对海量异构就业信息数据集成技术研究：设计一种结构化就业信息数据集成框架；提出了一种就业信息元数据映射方法，实现了对异构数据源的透明访问；设计了一种基于视觉特征的就业信息页面抽取方法，实现了非结构化就业信息抽取和模板生成。并研发了异构就业信息服务数据集成构件集。
2. 针对劳动者全生命周期就业信息电子记录管理技术研究：提出了一种非结构化数据管理的建模及检索方法，设计了多种非结构化数据属性建模方法，建立了非结构化网页就业信息数据组织模型；设计了一套完整的就业信息共享信息模型（E SID）；提出了一种面向就业信息数据共享并整合用户兴趣信息的社会化推荐方法。基于数据元框架定义，研发了就业信息电子记录管理及数据共享引擎构件集。
3. 针对就业信息数据资源存储管理技术研究：提出了一套就业信息分布式存储系统设计方案；提出了一种跨节点、跨域的缓存数据一致性管理及存储调度方法；设计了就业信息分布式云存储环境中服务器选择策略；设计了一种面向缓存服务器优化选择策略及其网络距离测量算法；研发实现了基于开源框架的分布式存储、分布式缓存和调度管理三大模块的就业
信息分布式存储控件集。

4. 针对就业信息数据资源安全管理技术研究：提出一种基于数据项和用户角色的隐私保护方案；定义了就业信息分级管理机制和安全访问策略；提出了一种基于隐私保护策略池的隐私保护方法；并研究了数据资源安全保障构件集，实现了对就业信息数据资源的安全管理。

新型超大容量全光交换网络架构及关键技术研究

承担单位：北京邮电大学
合作单位：武汉邮电科学研究院，中兴通讯股份有限公司，华为技术有限公司等
项目负责人：纪越峰
项目组成员：纪越峰，李慧，杨奇，葛超，熊前进等
结题时间：2017年5月

该项目为国家高技术研究发展计划“863计划”信息技术领域主题项目（项目编号：2012AA011300）。

该项目以灵活频域为技术路线，关键技术为核心抓手，原型系统为目标成果，联合全国相关高校、科研院所和企业，开展了体系结构、节点交换和传输系统的深入研究与技术开发，并进行了有效的组织与管理。该项目包含以下4个课题:

1. 新型超大容量全光交换网络体系结构、关键技术、协议及性能评估方法研究。
2. 新型无栅格、可变速率全光交换技术研究及实验样机研制。
3. C波段 N×1Tbps 超高速大容量 WDM 光传输关键技术及实验系统研制。
4. 10Pbps 以上超大容量、高可靠干线光交换节点关键技术研究及实验系统研制。

该项目完成的核心研究工作与取得的主要创新贡献为：提出了一种多维一体全光交换网络体系结构；攻克并掌握了“四无”（无色、无向、无栅格、无阻塞）波长选择光交换，10Pbps 超大容量集群节点光交换和 C 波段 16Tbps 实时波分复用光传输等系列化全光网前沿技术；研制完成了原型样机并通过性能测试，可支持 10G 到 1Tbps 多速率切换的可变带宽光交换、10Pbps/细颗粒/低能耗的大容量光交换和 16×1Tbps 无误码传输 3500 公里的高速实时光传输等核心功能，技术指标领先；设计并构建了软件定义灵活全光网创新实验环境（AONI），完成了全光网创新应用功能验证；相关技术成果已得到实际应用。

新型超大容量全光交换网络体系架构，关键技术，协议及性能评估方法研究

研究单位：北京邮电大学
合作单位：上海交通大学，华中科技大学，清华大学，工业和信息化部电信传输研究所
课题负责人：李慧
课题组成员：李慧，赵永利，高冠军，杨辉，张佳玮，孙卫强，胡卫生，肖石林，郭薇，杨学林，孟理林，何浩，张颖，刘德明，付松年，罗风光，夏历，鲁平，张汉一，华楠，张国颖，汪建华，郭颢，杨立伟，刘谦，吴庆伟，吴冰冰，汤晓华，
该课题为国家高技术研究发展计划“863 计划”信息技术领域“新型超大容量全光交换网络架构及关键技术研究”主题项目课题（课题编号：2012AA011301）。

该课题抓住全光通信网这一战略方向及学科前沿, 以新型超大容量全光交换网络的体系架构为主题, 以应用基础研究和自主创新为定位，以评测方法和标准化技术为重要突破口，重点研究支持超大信息容量和超高速率光交换的，以高谱效率和低功耗方式为特征的，具有变速率和变带宽的高可扩展能力的，基于灵活栅格实现网络可兼容性的，可承载全光新业务的新一代全光交换网络的体系架构，控制管理机制和评估测试技术，掌握一批原创性的节点，系统和智能联网技术成果，搭建全光网实验平台，系统测试和业务演示环境。

该课题提出的 SDON 全光网络体系架构与实验系统能够使光网络直接提供多样化的网络服务，该系统支持高扩展性小粒度的频谱灵活全光交换；支持低能耗全光交换，大幅降低能耗；支持高速单纤双向全光传输；支持光网络虚拟化，带宽按需提供等“光即服务”功能。在此基础上，提出了针对“四无” 节点，16x1 Tbps 超高速率传输系统，10Pbps 超大容量交换系统等全光交换网络关键系统的性能评估与测试方法。

C 波段 16x1Tbps 超高速大容量 WDM 光传输关键技术及实验系统研制

承担单位：中兴通讯股份有限公司
合作单位：北京邮电大学，中国电信股份有限公司北京研究院，信息化部电信传输研究所
课题负责人：葛 超（中兴通讯股份有限公司）
北邮课题负责人：陈 雪
北邮课题组成员：陈 雪，李 岩，王立芹，张治国，郭宏翔，邱吉芳，伍 剑，李 茂，刘紫军，王 磊，江 峰，孔德明，赵 阳，秦攀科，杨鹏飞，刘 涛，鞠 哲，胡新天，晁玉玲，李孝婷，张迦淇，袁 慧，崔晓旭，孙艳飞，佟 洲，刘文涛，陈 驰
该课题为国家高技术研究发展计划“863 计划”信息技术领域“光子集成技术与系统应
用”项目中的课题（课题编号：2011AA010306）。

针对目前和未来骨干城域网、光纤接入网以及宽带无线接入的需求，重点解决面向高速系统应用的光子集成共性理论问题，突破低损耗和小尺寸集成光波导器件的关键技术，研制完成相应集成器件；突破硅基 100Gb/s 单片集成多电平调制格式相干接收的关键技术，研制完成相应传输模块；突破 InP 基 10×10Gb/s、16×2.5Gb/s 和 8×6GHz 等单片集成激光发射芯片和模块的关键技术；研制基于 PIC 芯片与模块的实验系统，进行相关技术的评测并进行业务演示。

该课题研究并掌握了基于 InP 基 10×10Gb/s、16×2.5Gb/s 和 8×6GHz 等多波长 PIC 模块的功能及性能评测等关键技术，对模块的：光发射波长、信道间距、每通路输出功率、调制消光比、边模抑制比、眼图、光信噪比以及各通道之间串扰等参数指标进行了测试评估。研制完成了基于 PIC WDM 模块的光传输与接入实验系统和相应的业务应用演示系统；研发完成了光载无线交换设备以及高性能非线光传输模块。基于 10×10Gb/s 发射模块的光传输业务应用与实验系统，实现不少于 10 个信道，信道传输速率 10Gb/s，信道间距 200GHz，传输距离大于 50 公里。数据传输系统及演示：基于直调 16×2.5Gb/s 发射模块的光接入业务应用与实验系统，实现了 16 个信道，信道传输速率为 2.5Gb/s，波长范围大于 32nm，传输距离大于 10 公里的光接入系统及演示：基于模拟直调 8×6GHz 发射模块的模拟光传输业务应用与实验系统，实现了 8 个信道、信道调制带宽大于 6GHz，信道带宽 100MHz，传输距离大于 10 公里的模拟光接入系统及演示：在 863 国家实验床上完成了主要功能验证，实现了千兆以太网的适配及业务演示。

提出了基于 PIC 模块的功能评测、业务应用与实验系统方案，解决了大容量多业务汇聚与适配、动态可重构射频光切换、多波长资源调度控制与路由问题。在模块研制与应用方面有创新；该课题的研究成果有力支撑了光载无线交换设备及高性能射频光传输模块的研发与应用。

10×10Gb/s 单片集成传输芯片及系统模块技术

承担单位： 中科院半导体研究所
合作单位： 北京邮电大学，南京大学，电子科技大学
课题负责人： 祝宁华（中科院半导体研究所）
北邮课题负责人： 徐 坤
北邮课题组成员： 徐 坤，戴一堂
结题时间： 2017 年 12 月

该课题为国家高技术研发发展计划“863 计划”信息技术领域项目“光子集成技术与系统应用”中的课题（课题编号：2011AA010303）。

针对 InP 基 10×10Gb/s 单片集成激光发射芯片，开发了 10 路并行激光器直调阵列驱动，实现了对激光器阵列的宽带驱动。开展了对激光器芯片的测试，包括光发射波长、信道间距、每通路输出功率、调制消光比、边模抑制比、眼图、光信噪比以及各通道之间串扰等参数。

利用 10×10Gb/s 直调激光器阵列芯片和开发的驱动，搭建了 10×10Gbps 多业务传输演示与传输系统，实现了 10 个信道，信道传输速率 10Gb/s，信道间距 200GHz，传输距离大于 50 公里的光传输系统及演示。

提出了基于 PIC 模块的功能评测、业务应用与实验系统方案，解决了大容量多业务汇聚与适配、动态可重构射频光切换、多波长资源调度控制与路由问题。在模块研制与应用方面有创新。
模拟直调 8×6GHz WDM 芯片及光载无线传输模块技术

承担单位：南京大学
合作单位：北京邮电大学，中科院半导体研究所，东南大学，浙江大学
课题负责人：陈向飞（南京大学）
北邮课题负责人：徐 坤
北邮课题组成员：徐 坤，尹飞飞，翟 弈，申冠生，刘凌宇，田慧平，李建强，戴一堂，赵腊梅，杜宗鹏，刘伟佳，杨大全

结题时间：2017年12月

该课题为国家高技术研究发展计划“863 计划”信息技术领域“光子集成技术与系统应用”项目中的课题（课题编号：2011AA010305）。

针对 8×6GHz 模拟直调激光器阵列芯片，开发了 8 路并行激光器模拟直调阵列驱动，实现了对激光器阵列的宽带驱动。开展了对激光器芯片的测评，包括光发射波长、信道间距、每通路输出功率、调制消光比、边模抑制比、眼图、光信噪比以及各通道之间串扰等参数。

利用 8×6GHz 模拟直调激光器芯片和开发的驱动，搭建了光载无线 WiFi 接入演示系统，实现了 2.4GHz 和 5.8GHz WiFi 信号的同纤模拟传输，传输距离大于 10km，8 个信道，信道调制带宽大于 6GHz，信道带宽 100MHz 以上。

在国家 863 试验床上对上述系统进行了演示验证。

室内定位基础设施研制与组网实施

承担单位：北京邮电大学
合作单位：哈尔滨工业大学，中卫星空移动多媒体网络有限公司，
北京首科信通科技有限责任公司，中国传媒大学，
深圳航天科技创新研究院，武汉大学，中国科学院国家天文台
课题负责人：刘 雯
课题组成员：刘 雯，黄兰池，施伟能，孟维晓，张俊华，周志军，邓伦晖，
罗嘉金，崔岩松，焦继超，万 能，刘 昆，张 寅，赵同刚，
吕 昌，郎祥辉，马 琳，赵文深，王丹志，徐玉滨，袁 协，
关维国，朱宇佳，孔若杉，冯 晶，孟立新，徐伟峰，张 杰，
庞 峰，谢 楠，杜伟😆，张丽容，雷源汉，韩 钢，田宏伟，
马永奎，胡正群，刘 成，邹德岳，陈 超，王文静，高玉龙，
余心乐，司 璐，南海斌，刘文龙，肖 娟，李娜娜，陈 雷，
孙 磊，周世立，刘恩晓，陈 波，姜 北，迟永钢，何瑞珠，
张志富，陈才湖，盛 庆，朱亚超，朱 丽，吴国诚，孙晓飞，
李利民，孙子砚，席 岳，陈 舒，刘晓华，韩 毅，朱星宇，
邢志尧，马若飞，黄俊源，刘竞超，杨 光，严仲佳，程 晖，
张乳燕，杨 扬，李智峰，陈勇群，李欣欣，王英达，李 航，
林 海

结题时间：2017年2月
该课题为国家高技术研究发展计划“863计划”地球观测与导航技术领域“城市室内外高精度定位导航关键技术与服务示范”项目中的课题（课题编号：2012AA120802）。

该课题主要负责构建广域室内定位基础设施并组网，为广域室内外位置服务奠定基础。承担任务为：研究定位信号播发基站的高精度时间同步技术，提高定位信号的同步精度，为终端高精度定位提供支持；突破定位信号设计与播发、室内外定位定位技术的无缝过渡技术，形成广域室内定位及其与室外定位的无缝过渡解决方案，实现全网高时间同步精度定位信号播发，为项目提供广域室内定位所需基础信号源，研发网络侧高精度定位平台，为项目中的应用示范提供人员位置信息；突破室内复杂环境下信号多特征信息获取技术总体研究、地理信息系统研发及应用示范，内容紧密围绕项目总体目标展开。

该课题组开发了高精度时间同步装置、网络侧定位平台、室内高精度特征采集系统；构建了L频段室内定位试验网、网络侧多用户并行定位与管理系统平台。完成了任务书规定的研究内容，功能和性能指标达到任务书要求。在此基础上，该课题组突破了时间同步、网络侧多用户并行定位与管理等关键技术，建立了室内定位特征辅助信息数据库和高精度指纹匹配定位模型，满足大容量用户需求，定位精度优于3米。

该课题解决了室内高精度定位基础设施及网络问题，并建立了网络侧定位平台。基于该平台，可以全面掌握某一区域内人员密度和分布情况，为政府部门预防群体性事件，处置建筑物内公共安全事件提供了第一手数据，从而为维护社会稳定，提升紧急事件处置能力奠定了基础，具有重大社会意义。

智能电网安全通信与智能化网络管控技术研究

承担单位：中国南方电网有限责任公司
合作单位：北京邮电大学，武汉邮电科学研究院，中国电子科技集团公司第七研究所，中国能源建设集团广东省电力设计研究院
课题负责人：汪际锋（中国南方电网有限责任公司）
北邮课题负责人：亓峰
北邮课题组成员：亓峰，熊翱，王智立，杨杨，邱雪松
结题时间：2017年3月

该课题为国家高技术研究发展计划“863计划”“高安全、高性能的智能电网信息与通信技术”项目中的课题（课题编号：2012AA050801）。

该课题的主要任务是研究高安全、高性能的智能电网信息与通信技术，构建结构合理、安全可靠、包容性强、即插即用、覆盖全面、支持全网高精度时间同步的下一代大容量、高速通信网络，以满足智能电网信息化、自动化和互动化的要求。主要内容包括：面向智能电网控制业务的光传输网重构与自愈技术研究及设备研制，高压电磁环境干扰自感知宽带自愈组网技术研究及设备研制，高精度多源动态适应统一授时技术研究及设备研制，电力通信网风险评估及自愈指标体系研究，电力通信网自愈能力仿真平台研发，以及对上述研究成果的现场验证和示范应用。

北京邮电大学承担其中的任务4“电力通信网风险评估及自愈指标体系研究”和任务5“电力通信网自愈能力仿真平台研发”。在任务4中，完成电力通信网风险评估指标体系和电力通信网自愈评估指标体系的研究，提出了电力通信网风险评估指标体系，从业务支撑指标、通信网络运行质量指标、通信网络运维质量三个视角进行指标体系的划分和建立。同时，提出电力通信网自愈评估指标体系，根据指标的得分值与对应的自愈值之间的关系，
将指标划分为：正相关型、负相关型、0-1 型、模糊型四类，利用层次分析法实现对电力通信网自愈能力的评估。在任务 5 中，完成构建各类网络资源模型和自愈动力学模型和开发并应用电力通信网自愈实时仿真平台的工作，提出将网络自愈动力学模型划分为网络仿真和运维仿真两个部分组成。突破基于拓扑结构的电力通信网络可靠性分析与基于 N-X 的业务可靠性分析、面向导向性场景分析的故障模拟分析、基于多维度的网络业务优化方法等关键技术，研发电力通信网自愈实时仿真平台。

中文情感语义计算技术与系统

承担单位：合肥工业大学
合作单位：北京邮电大学，安徽科大讯飞信息科技股份有限公司
课题负责人：任福继（合肥工业大学）
北邮课题负责人：王小捷
北邮课题组成员：王小捷，刘咏彬，袁彩霞，李睿凡，冯方向，易炼，吴兴，刘仲皖
结题时间：2017 年 4 月

该课题为国家高技术研究发展计划 “863 计划” 信息技术领域 “大规模中文语义信息处理技术与系统” 项目中的课题（课题编号：2012AA011103）。

该课题主要研究内容包括：情感库建设、中文语义计算核心理论系统集成与样机研发三个方面：

1. 情感库建设：建设的中文情感语义库以文本情感表达的空间模型为框架，从从多粒度、多角度采用机器学习自动标注与人工校验相结合的方法构建。已建立了大规模中文情感语义库，词规模已经达到 3200 万，包含评论、会话微博客等多种形式的语料。同时，为辅助人机交互的研究，项目构建了会话情感语料库、语音情感库和人脸表。

2. 中文情感语义计算核心理论：提出并完善了心状态转移网络理论，获得了多模情感能量的计算方法。围绕中文文本、中文语音以及多模态信息，研究中文情感语义分析、中文情感语义表达的核心技术。探究了情感的分类体系，完成句子多维复合情感的识别研究，进行了基于 Ren-CECps 的微博热点事件情感分析。此外，面向视觉、行为的层面，进行了基于视觉的情感识别测试，完成了基于视觉的机器视觉识别系统，最后研究了多模态的情感计算。其中针对中文文本的正负情感识别率达到 91.8%。由此，建立了一整套中文情感语义计算的核心理论。

3. 系统集成与样机研发：将中文情感语义计算理论和方法的研究成果进行集成，完成了视频认知导览系统、基于 POMDP 模型的情感对话系统、人形机器自动表情生成、表情识别和情感建模等几个系统。并且，在先进智能机器人上行了部署验证，研制了具有中文情感语义计算能力的护理机器人样机，对所开发的情感语义识别系统，智能身份识别与手势控制集成研发出情感机器人样机。
深空信道模型、中继网络架构和通信传输协议

承担单位：北京理工大学
合作单位：华中科技大学，北京科技大学，北京邮电大学，
西安空间无线电技术研究所
课题负责人：安建平（北京理工大学）
北邮课题负责人：王晓湘
北邮课题组成员：王晓湘，吕旌阳，张鸿涛
结题时间：2017年2月

该课题为国家高技术研究发展计划“863计划”地球观测与导航技术领域“面向深空多模探测任务的高精度导航与测控通信技术（一期）”项目中的课题（课题编号：2012AA121604）。

该课题对深空通信传输协议以及深空通信的无比率喷泉编码设计进行研究。在深空通信和深空探测领域，地球和宇宙飞船之间的距离非常遥远，无线电波以光速传播，地球和飞船之间需要相当长时间才能进行一次信息交互。在信号传送延迟很大的环境下，采用反馈重传方式的通信传输体制实现数据交互很难支持高速数据传送。

无比率喷泉编码是一种在发送端将输入信息分组进行稀疏编码生成长的数据分组流，发送编码分组流，在接收端对编码数据分组进行组合并解码恢复数据的信道编码方式。采用这种方法数据传输方式，由于发送数据被编码发送，接收端只需要接收到足够的数据分组，就可以根据编码规则计算出发送数据文件，任何特定的数据包丢失都不会影响整个数据文件的恢复，因此无需重传任何特定的数据分组。在发送端将数据文件拆分成数据分组，将数据分组编码成无比率喷泉分组，然后发送这些喷泉分组。接收机从信道持续地接收分组并解码，一旦接收成功，单次反馈成功信号。但这种在深空通信中，由于信号传输延时很大，从接收机发出确认成功信号到发送机收到此信号经历很长时间，在此时间段，由于发送机不知道接收机已经成功接收，将继续发送喷泉分组信号，造成带宽资源的浪费。基于此，实际信号发送时，应该在深空信道的信噪比基础上估计出深空信道的容量，并根据无比率喷泉编码与容量的信噪比间距，在留出适当冗余的情况下，实际计算出当前的编码比率，并采用此比率完成信息文件的发送。无比率编码本质上是一种低密度校验编码，在深空信道环境下可以使用很长的编码码长，因此，无需反馈前向纠错性能非常接近香农限。

为实现无反馈的前向纠错，无比率喷泉编码应具有近香农限的纠错性能。为实现高的带宽频率，应采用高阶调制技术。高带宽频率实现的方法包括二进制编码和高阶调制以及多进制编码与多进制调制。
光接入网络演进技术研究与示范

承担单位：中兴通讯股份有限公司
合作单位：北京邮电大学，中国电信集团公司，上海宽带技术及应用工程研究中心，
国家广播电影电视总局广播科学研究院，北京格林伟迪科技有限公司
课题负责人：许明（中兴通讯股份有限公司）
北邮课题负责人：陈雪
北邮课题组成员：陈雪，顾仁涛，纪越峰，王立芊，张治国，李慧，徐塞虹，
张士宗，胡跃，吴建，郑敏，曹志，赵阳，苏春，王华，周庆亮，宋北平，苏春，秦军，王佳和，刘让龙，何晨，
夏营，李西聪，杨钢，李孝婷，迟瑶，余思阳，李丽君，杜彩丽，魏忠诚，张颖，李建锋，彭庭，周骥，胡彬，
郭俊虎，孙艳飞，马丽，汤昊，潘卓娅
结题时间：2017年4月

该课题为国家高技术研究发展计划“863计划”信息技术领域“三网融合演进技术与系统研究”重大项目中的课题（课题编号：2011AA01A104）。

三网融合是我国信息产业发展的战略目标，接入网作为国家网络基础设施建设与发展中的重要部分，是推进“三网融合”建设的“重中之重”。光接入网络演进技术研究与示范课题通过创新解决大容量接入，核心芯片自主开发和新型接入网技术研发等关键问题，促进“三网融合”的建设与发展。

该课题开展了新型TDM-WDM汇聚接入网系统架构及系统设备研究，10G PON核心芯片及设备实现研究，创新系统研究，示范网建设和标准规范研究等工作。其中，北京邮电大学课题组针对高效率的对等交互、高谱效的无色ONU技术，单波长容量接入，接入网的多层优化展开了一系列技术创新和系统平台研发，包括：攻克了对等高效PON新型多点控制协议，基于流的流量分类技术，适合对等高效PON系统动态带宽分配算法，适合对等高效PON系统的OFDM全光网络编码机制等多项关键技术；设计开发了上下行链路速率为10Gbps的对等高效PON实验系统，实现了ONU间信息交互时接近50%的下行传输效率增益及类似于“一帧一密”的高强度加密接入效果；通过远端EDFA和可调谐激光器研制实现了可支持单波长10Gb/s速率，50GHz通道间隔，上下行波长通道重用，覆盖范围40km以上，具有上下行各320Gb/s容量能力的WDM-PON实验系统，显著提高了覆盖范围和频谱效率；基于PM-QPSK调制，相干接收与DSP补偿技术研发了40Gb/s PON实验系统，实现了单波长下行速率40Gbps，上行速率10Gbps，分支比1:32时，支持最长传输距离和最大距离差40km，用户业务下行峰值速率可达20Gbps，上行峰值速率可达10Gbps；基于多层网络分析和物理数据整合，实现了业务带宽层，PON层，光纤层，管道层的跨层规划和优化，为实际网络设计和运营提供重要参考。
融合网络业务体系的开发

课题承担单位：中国科学院声学研究所
课题合作单位：北京邮电大学
课题负责人：程钢（中国科学院声学研究所）
北邮子课题负责人：赵耀
北邮子课题组成员：赵耀，邹华，韩荣恒，杨谈，闫丹凤，郭少勇，崔毅东，邱雪松，郭少勇，崔毅东，邱雪松，郭少勇
结题时间：2017 年 4 月

该课题为国家高技术研究发展计划 “863 计划” 信息技术领域 “三网融合演进技术与系统研究” 项目中的课题（课题编号：2011AA01A102）。

该课题的研究目标是搭建分布式虚拟会话服务叠加网，构建语义化业务生成环境，完成融合网络业务管理与终端管理系统和业务性能的虚拟化监测验证系统的研制。主要研究成果如下：

1. 在分布式虚拟会话服务叠加网方面：提出了基于 RSPE 的分布式虚拟化会话服务叠加网的网络架构、资源弹性组织划分策略和虚拟资源隔离技术等，有效解决了电信网中传统的集中式会话控制架构的诸多限制，更好地适应融合网络下的异构特性和分散特性；并且，能够保证同一虚拟私有网内的资源间信息高度共享，不同虚拟私有网之间的资源互不干扰，实现各个私有网内部资源的独立性与稳定性，且虚拟私有网所需的资源将根据用户或业务需求进行动态调整。

2. 在语义化业务生成环境方面：设计并实现了面向服务的爬虫引擎，设计了基于朴素贝叶斯和向量空间模型（VSM）的 RESTful 服务融合识别算法、基于网页特征库的服务的自动化语义标注算法、基于图挖掘技术的语义化 Web 业务生成方法和基于分布式网络定位的 QoS 预测方法等关键算法和技术。

3. 在融合网络业务管理与终端管理系统方面：面向海量异构终端信息的建模和共享技术，提出海量异构终端信息建模方法，并基于该方法构建一套体系化的、通用的海量异构终端管理信息模型。此外，课题组提出海量异构终端管理服务能力的封装与提供技术，面向服务对终端管理能力进行封装，并对外提供给三网融合业务平台中的其他业务组件。

4. 在业务性能的虚拟化监测验证系统方面：提出了虚拟检测技术和云监测平台体系架构，保证了监测逻辑与环境和平台无关，能够与新业务自动同步部署，且可以根据虚拟计算资源的变化自动调整监测能力。

TDD 系统 IPV6 设备研发和产业化

承担单位：大唐移动通信设备有限公司
合作单位：北京邮电大学
项目负责人：周继红（大唐移动通信设备有限公司）
北邮课题负责人：许晓东
北邮课题组成员：许晓东，黄小红，侯延昭，张雪菲，吴超，袁春经，唐晓璇
结题时间：2016 年 9 月
该项目为国家发改委下一代互联网技术研发、产业化和规模商用专项项目。

北京邮电大学课题组负责 TD-LTE 的 IPv4 向 IPv6 平滑演进网络架构和策略研究，参与 TD-LTE 系统支持 IPv6 设备演示机验收。北邮课题组主要完成了以下两项关键技术内容的研究：

1. TD-LTE 网络中的 IPv4 向 IPv6 平滑演进策略研究：针对 TD-LTE 当前的具体部署环境进行分析，由于 TD-LTE 的本身对 IP 地址的需求特性，同时面对下一代网络的发展，主要针对目前 IPv6 过渡技术对其进行相应的适配。根据不同应用场景使用不同的具体技术，最终实现整个网络的平滑过渡。

2. 支持全 IP 架构的 TD-LTE 系统网络架构演进技术研究：针对支持全 IP 架构的 TD-LTE 系统，设计基于无框架网络架构的通信系统及组网方法，并融合 SDN 及 OpenFlow 技术，明确了无框架网络架构的演进方向，并对新架构下的各个组成模块完成了功能定义。基于网络分片策略，针对支持全 IP 架构的 TD-LTE 系统设计业务分片策略，从而实现对不同的服务质量需求进行分类异构服务。通过利用经济学中的效用理论来描述不同类型业务的特点，将数据速率映射到用户的满意度，从而实现更有效的按需分配有限的系统资源。

基于下一代互联网的国家干线公路网管理
与服务应用示范工程

项目承担单位：交通运输部公路科学研究所
项目合作单位：交通运输部路网监测与应急处置中心，北京市首都公路发展集团有限公司，安徽省交通运输联网运行管理中心，江苏宁沪高速公路股份有限公司，工业和信息化部电信传输研究所，北京邮电大学，安徽博微广成信息科技有限公司
项目负责人：李斌（交通运输部公路科学研究所）
北邮项目负责人：黄小红
北邮项目组成员：黄小红，张沛，赵钦，吴军，王振华，马严，林昭文
结题时间：2017 年 3 月

该项目为 2012 年下一代互联网技术研发、产业化和规模商用专项项目（项目编号：CNGI-12-03-005）。
该项目主要完成的内容如下：
1. 基础支撑技术研究：
 （1）交通行业下一代互联网网络地址规划为了实现交通网络与其他网络之间的互连，交通网络已向 CNNIC 申请一段独立的 IPv6 地址，形成自己的自治系统，并通过 BGP 的方式与其他网络互联，同时交换路由；
 （2）基于下一代互联网的国家干线公路网管理与服务安全及认证基于下一代互联网的国家干线公路网管理与服务系统特点，实现分层的安全及认证功能；建立路网管理与服务领域下一代互联网设施接入安全检测需求体系；国家级路网监测点与省级路网平台之间，省、省两层路网平台之间的信息交互应采用行业统一的密钥安全认证服务体系进行保护，确保交互数据的真实性及抗抵赖性。

2. 完成基于 IPv6 的省级路网管理系统改造建设：
（1）改造建设省内路网管理与应急处置区域分中心：实现以 IPv6 环境为主体，兼容 IPv4 的通信网络环境和应用系统；
（2）改造建设省级路网管理与应急处置中心：实现 IPv6、IPv4 双协议共存，接入区域分中心 IPv6 为主的通信系统，接入外场公路网关键监测点数据，力争实现与部路网中心的 IPv6 通道的建设；
（3）改造建设高速公路通信专网：实现区域内以 IPv6 为主环网，支持 IPv4、IPv6 协议的交通监控设施的平滑接入；
（4）改造建设对外信息服务系统：改造建设对外信息服务网站系统，技术上实现支持 IPv6 的终端进行在线访问。

3. 完成基于 IPv6 的部路网管理中心改造建设：
（1）建设示范单位与部路网管理中心之间的通道：建设基于 IPv6 的示范单位与部路网管理中心的通道，建立与 CERNET2 网络的链接链路，实现 IPv6 备用链路的联通；
（2）建设基于 IPv6 的关键监测点综合管理系统：接入示范单位建设的关键监测点前端系统数据，实现视频、数据的综合接入管理；
（3）改造建设中国公路信息服务网：实现基于 IPv6 终端的无缝访问。

基于 IPv6 的北斗位置服务开放平台应用

项目承担单位：赛尔网络有限公司
项目合作单位：清华大学，北京邮电大学，中国四维测绘技术有限公司
项目负责人：王继龙（赛尔网络有限公司）
北邮项目负责人：黄小红
北邮项目组成员：黄小红，张沛，赵钦，吴军，王振华，马严，林昭文，张晓冬
结题时间：2017 年 3 月

该项目为 2012 年下一代互联网技术研发、产业化和规模商用专项项目（项目编号：CNGI-12-03-009）。

该项目计划建设基于 IPv6 的北斗位置服务平台，为大众提供基础轨迹服务和增值服务，为社会参与北斗位置服务开发提供开放平台，为各个行业、各个地区的位置服务平台和各类商业服务平台提供位置信息交换共享服务。主要内容如下：
1. 建设运营“位置数据库”，面向大众提供轨迹记录服务，面向机构提供虚拟专用位置数据库服务，面向社会提供位置信息开放注册和检索服务，面向其他位置服务平台提供位置信息交换共享服务。
2. 建设运营“北斗位置服务创新开放平台”，提供 IPv6 网络和服务器等基础设施服务，提供地图、地理信息系统等位置服务基础资源和特色资源，提供第三方增值服务开发接口，促进北斗位置服务创新开发。
3. 建设 IPv6 网络上的北斗位置服务门户，形成千万用户量级的商业服务平台，并通过充分整合政府资源、民间产业资本以及高校和社会的人才资源，促进北斗位置服务规模生产和创新。

该项目已建设完成基于 IPv6 的北斗位置服务开放平台，与 IPv4 互联网千兆互联，与 IPv6 互联网万兆互联，建设了 100TB 位置服务信息资源库，支持千万量级的用户规模。基于北斗位置服务平台，完成如下应用示范：
1. 智慧校园位置服务应用示范：面向 CERNET 和 CERNET2 的联网学校，提供智慧校园建设所需要的基础位置服务，建成覆盖百所校园、百万用户的智慧校园位置服务应用示范系统，提供 SNS 和校园生活导航等服务。

2. 现有位置服务系统集成和升级：应用于四维公司已有和正在发展的位置服务系统，实现对 IPv6 和北斗的支持。在车辆部署端系统，实时上传车辆位置信息，下发交通管理指令、导航定位服务信息和其他位置服务增值服务信息，实现高效率和高质量的现代交通管理和服务。

3. 北斗应用示范服务：应用于行业和地方的北斗应用示范项目，播发北斗增强信息，促进资源共享和业务互通。

下一代网络通过拉曼放大需要解决的新问题合作研究

研究单位：北京邮电大学电子工程学院
合作单位：葡萄牙电信研究院阿维罗分院
项目负责人：忻向军
项目组成成员：忻向军，张琦，张丽佳，刘博
结题时间：2017年3月

该项目为国家国际科技合作专项项目（项目编号：2012DFG12110）。
该项目围绕“下一代网络通过拉曼放大需要解决的新问题”展开研究，研究了拉曼放大理论，从正交波分复用光信号的非线性抑制机理、信号处理算法、级联放大策略入手，解决下一代光网络高速长距离传输的关键技术。该项目由北京邮电大学忻向军教授、葡萄牙电信研究院阿维罗分院安德烈教授分别担任双方责任专家，负责中方与葡方工作。在2012年6月至2015年6月三年的实施期间，主要研究成果如下：

1. 在拉曼放大理论研究基础上，从正交波分复用光信号的非线性抑制机理、数字信号处理和级联放大方面入手，提出了一种基于 LDPC 的混合级联型 Turbo 结构码的编码、译码方法，获得了优异的纠错性能和低译码复杂度，达到12dB的编码增益。

2. 提出了能量效率较高的新型编码调制格式，在平均能量相等的情况下提升了信号在单位时间内的有效能量。并采用色度色散均衡器与 MIMO 自适应均衡相结合的结构，在加入 EFEC 的情况下，实现拉曼放大环境下的光传输系统的无误码传输。

3. 研究了拉曼放大环境下的高速长距离光网络系统关键技术，建立了较完善的光正交波分复用光纤传输模型，利用差分进化和粒子群优化混合算法对多泵浦拉曼放大的泵浦的波长和功率进行优化，实现了对拉曼增益谱的优化，搭建了10Tb/s的1000公里光传输试验系统。

4. 在拉曼放大环境下的光信号传输模型基础上，研究了高速光 OWDM 信号的产生机理。从低速光 OWDM 入手，逐级通过偏振复用、副载波复用等方式，充分利用上下边带，最终产生高速光 OWDM 信号，该信号产生方案能近副载波信道之和达到高速率传输和拉曼放大需求。
航空通信中 NEMO 网络路由优化技术和 AAA 机制的研究

研究单位：北京邮电大学电子工程学院
项目负责人：刘元安
项目组成员：刘元安，高锦春，王卫民，范文浩，张洪光，袁东明，冉静，胡鹤飞，马晓雷，刘海洋，王辰，段思睿，李虎，廖明霞，郑鸿雁，裴霏，邓月明，裴君波，李春平，倪枫，陈留情，智超

结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61272518）。该项目旨在研究基于 IP 的航空通信中 NEMO 网络的关键技术。

该项目研究高密度传感器网络基于模糊化模拟进化计算的传感器网络分簇算法，实现无线传感器网络的整体性能最优化。主要研究内容如下：

1. 研究航空 NEMO 网络架构，提出适用于航空通信环境的 NEMO 网络架构，优化航空 NEMO 中节点链接部署方式。
2. 研究航空 NEMO 技术的业务分级机制，根据不同的业务分级进行相关的 QoS 响应，优化航空通信信道资源分配，平衡业务时延敏感性与安全性的需求。
3. 研究航空 NEMO 网络的移动性管理，结合飞机的飞行计划，通过对飞机的飞行状态进行建模，计算目标基站切换概率，进而进行预注册，减少切换时延。
4. 研究航空通信嵌套 NEMO 优化方案，通过 RA 与 UNA 消息字段，逻辑上消除 NEMO 网络 “嵌套性”。
5. 研究航空 NEMO 网络中的 AAA 机制，通过将 AAA 机制引入航空 NEMO 通信体系，提高网络的安全性。
6. 研究航空通信中的 NEMO 多播技术，通过基于航空多播架构的研究，提出无缝切换方案及路由优化方案，提高多播服务的稳定性，并减少时延。

认知协同车联网中交通安全业务 QoS 保障传输机制的研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：罗涛
项目组成员：罗涛，李剑峰，李静叶，赵明，刘雪莲，王文杰，何欣欣，覃建策，张磊，时伟森，方松，刘瑞娜，李俊涛，丁磊，王怡，张凡，郝丽，孙忆晨，张航，彭元松

结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61271184）。
车联网是智能交通系统的基础信息承载平台。为了减少交通事故，改善交通及驾驶环境，该项目主要研究认知协同车联网架构及服务于交通安全业务 QoS 保障传输的车联网关键技术。主要研究成果包括：具有链路维护功能的 MAC 协议，基于 QoS 保障的频谱分配与共享机制，可靠广播路由算法，路况估计算法，综合加权多跳广播路由算法和车联网传输容量分析等。尤其是线型认知车联网传输容量的研究填补了该领域空白，为车联网的进一步深入研究做出了一定的理论贡献。

基于上述研究成果，该项目基于 FPGA 搭建了符合 IEEE 802.11p 标准的车辆实时视频通信软硬件仿真平台，将为交通安全等相关实际问题的解决和智能交通的实现提供理论与技术支撑。

基于自主管理的 LTE 无线接入网节能机制和算法研究

研究单位：北京邮电大学网络技术研究院
项目负责人：李文璟
项目组成员：李文璟，喻鹏，丰雷，熊翱，郑飞，李子凡，尹梦君，周凡钦，赵攀，金多伟，杨洋，姜又琳，王青，吴青潇，苏玉林，姜正听，项楠，文彬，于曼，李莹，郭兴雨，张涛
结题时间：2017 年 3 月

该项目为国家自然科学基金资助面上项目（项目编号：61271187）。该项目通过自主管理技术实现 LTE 无线接入网自主节能，在有效降低无线接入网能耗的同时，提供多方面的用户服务质量保障。该项目首先提出了具有自主管理能力的自主节能管理控制环，在此基础上提出了集中式和分布式自主节能管理架构及管理流程，为后续自主节能管理机制的研究提供指导。随后，针对自主节能管理中的三个关键环节展开研究，并提出相应的解决方案。主要研究内容如下：

1. 精确的能耗量化模型是接入网能耗准确评估和监测的基础：提出了传统电网供电情况下的 LTE 无线接入网精确能耗模型、混合能源供能的无线接入网能耗量化模型、以及协作或非协作无线终端的能耗量化模型，并提出了节能效果评估模型，为后续阶段的研究提供了有力保障。

2. 面向多目标的自主节能和补偿机制是实现有效节能的重要保障：提出了基于多维业务量特性的自主节能和恢复触发机制、面向区域化节能的自主节能算法、基于多种实现方式的节能补偿机制、以及基于数据分析和挖掘的小区节能与中断状态识别机制。

3. 为了减小自主节能对用户的影响，研究了用户影响最小化的节能执行调度方法，分析了影响用户体验的多方面因素如资源调度、接入容量、负载均衡度等，并分别研究了影响最小化的解决方案。相关结果均通过仿真实验进行了验证，显示了良好的性能。

基于该项目的理论研究成果，项目组研发了机房能耗分析系统，并在实际机房环境中进行了试验应用。该系统可以对机房的能耗指标和环境参数进行多维度、多粒度、多维度的分析。通过使用该系统，可以全面掌握能耗和环境情况，为节能方案提供依据，实现能耗的闭环管理。
基于供应链协同的无线传感网自适应覆盖控制技术研究

研究单位：北京邮电大学电子工程学院
项目负责人：张英海
项目组成员：张英海，王朝炜，李秀华，王卫东，康琳，李金兰，林侃成，司红江，徐俊，刘志强，谢欢，李梦龙，王子豪，陈志，徐晓宁，胡雯涛，柳笛

结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61271186）。

该项目研究基于供应链协同的无线传感器网自适应覆盖控制技术，包括研究跨层供应链模型，基于供应链协同的无线传感器网络可变格栅分级覆盖控制模型。主要研究内容如下：

1. 在研究跨层供应链模型方面上：首先，针对最优路由路径选择引起的网络功耗增加问题，引入多sink路由选择模型，并在该模型的基础上提出基于朴素贝叶斯分类模型的概率路由选择算法，增强了整个无线传感器网络的可靠性，使得整个网络的能量消耗更加均衡。然后，由于移动的sink节点的能量负荷大，提出无线传感网中基于方形和栅格的位置更新协议，从而降低了节点位置更新引起的能耗。另外，为了解决无线传感器节点频谱利用率低下问题，提出一种基于非合作博弈的反相竞价策略，实现了信道资源的合理分配。最后，针对无线传感器网络的频谱均衡以及负载均衡问题，提出基于TDMA的睡眠调度机制以及基于度限制的数据收集理论的负载均衡和能效提升模型。

2. 在基于供应链的无线传感器网络可变栅格分级覆盖控制模型方面上：首先，针对密集节点覆盖重叠及空洞问题，提出基于非合作博弈模型的新型感知方法，提高了感知参与度，增强了调度的合理性，实现了网络覆盖的最优化。然后，分析了感知节点随机接入信道和频繁的信道切换引起的分组冲突问题，提出基于认知无线电技术的协作路由算法，降低了信道切换耗能。另外，由于存在无线传感器网络覆盖率与部署节点数目的冲突问题，提出基于粒子群和帕累托最优的多目标覆盖控制算法；在保证覆盖率的前提下减少了活跃节点的数目。最后，针对网络节点的调度问题，提出了分层链路调度与主动时隙采集机制，有效避免了传感器空闲侦听时引起的能量浪费，从而减少能量消耗。

基于认知的光载无线宽带接入网中资源管理的新模型与新方法

研究单位：北京邮电大学信息与通信工程学院
项目负责人：纪红
项目组成员：纪红，Victor C. M. Leung，李曦，张鹤立，王晓刚，王珂，单宝健，刘刚，王永斌，刘宜明

结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61271182）。
随着新型业务需求的不断提高和用户数量的迅速增长，传统分布式系统架构会导致信道间干扰复杂、功耗严重、资源利用率低下等问题。因此，需要设计更合理的网络模型和通信技术为语音、数据、图像、流媒体等业务提供更有力的支持。主要研究内容如下：

1. 将认知无线电、分布式天线及光纤传输技术引入无线接入系统，研究基于认知的光载无线宽带接入网模型，采用集中式网络控制和管理方式，构建基于认知的光载无线宽带接入网，克服传统架构的缺陷，实现网络更可靠运行和更科学管理。

2. 结合基于认知的光载无线宽带接入网架构的特征，研究信道状态预测、功率控制以及多维资源弹性共享的数学建模，并在此理论基础上设计新型的信道状态预测、功率控制以及资源共享算法，实现网络更可靠运行和更科学管理。

3. 搭建仿真平台，对提出的新型算法进行验证，获得良好的仿真结果。研究成果表明：在基于认知的光载无线宽带接入网结构下，所提方案实现了信道状态的快速准确预测、系统的功耗优化以及资源的高效灵活管理，为新型无线接入网场景下有效传输和资源共享提供可行的解决方案。

该项目研究了基于认知的光载无线宽带接入网模型：在基于认知的光载无线宽带接入网系统架构下，针对信道状态预测、功率控制、多维资源共享进行数学建模与理论分析，并在理论分析的基础上进行算法的设计、改进及仿真实现；此外，在系统分析和理论研究的基础上，搭建了验证仿真平台。

自适应多分辨率宽带频谱压缩感知

研究单位：北京邮电大学
合作单位：国家无线电监测中心
项目负责人：郭文彬（北京邮电大学）
项目组成员：郭文彬、陆 阳、李 航、汪 鑫、艾 华、石同享、刘丹丹、席雄芬、杨立山、林小斐、徐梓健、李 昂
结题时间：2017 年 3 月

该项目主要针对宽带无线信号的稀疏特征，从分辨率、压缩测量等方面进行压缩感知理论与算法方面的研究。主要研究成果如下：

1. 针对宽带无线信号的流特征：基于滑动窗口观察，分析了压缩采样前后的信号相关性，建立了压缩采样下的流信号高斯-马尔科夫模型，并基于该模型，提出了基于卡尔曼的压缩感知算法，分别研究了未知稀疏度下、未知信道噪声参数下的全盲卡尔曼压缩感知算法。研究结果表明：采用高斯-马尔科夫信号流模型的卡尔曼压缩感知算法相比其他流信号压缩感知算法具有更高的压缩效率。

2. 针对宽带无线信号流特征：提出一种基于连续观察窗缓存机制的多分辨率下的压缩感知框架，研究了多分辨率下的压缩重构性能，提出了一种高低分辨率重构的算法。针对宽带无线信号的动态特性，研究了自适应采样下的压缩感知算法，提出基于支撑集突变与信号误差突变的自适应采样判决机制，能动态跟踪稀疏支撑集的变化特征并基于该变化特征进行相应的自适应采样。

3. 在成果转化方面：设计开发了基于分布式电磁监测系统软件。针对压缩感知技术，搭建了相关的系统仿真平台，并基于 FPGA 和 AD9361，开发了相应的宽带频谱感知系统硬件平台，为验证算法的实际有效性提供了软硬件平台基础。
面向 IMT-A 的 femtocell 绿色自组织关键问题研究

研究单位: 北京邮电大学信息与通信工程学院
项目负责人: 温向明
项目组成员: 温向明，路兆铭，景文鹏，张志才，何盛华，扶奉超，陈 昆，陈志强，郑 伟，孙 勇，赵振民，李 伟，张海君，赵 君，王喜东，刘京芳，刘 卉，何盛华

结题时间: 2017 年 3 月

该研究项目由国家自然科学基金资助面上项目（项目编号：61271179）。该项目主要针对建立 Femtocell 无线资源分配模型，设计低复杂度的自组织无线资源分配算法展开研究，为 IMT-A Femtocell/Smallcell 系统的无线资源分配参数的自配置自优化提供理论依据，最终实现同时保证用户服务质量的网络能效的最大化。该项目所获得的研究成果如下：

1. 实现了一套基于 3GPP 标准的异构无线网络系统级仿真平台：该平台可以模拟 Macrocell 和 femtocell 组成的异构双层网络场景，具体实现了物理层、链路层和应用层等的网络功能。基于该仿真平台对所提节能无线资源分配策略进行了仿真验证。该平台为异构无线通信网络节能技术研究奠定了良好的基础。

2. 对于 Macrocell-Femtocell 组成的异构双层网络，划分为同频部署和异频部署，以及密部署和稀疏部署等不同的场景，并分别对应每个场景下的上行链路和下行链路中的能效优化问题进行了研究。在问题建模上，引入了有效容量的概念从而提供时延保障。在问题的求解方面，通过将整体资源分配问题分解为子信道分配和功率控制两个子问题的方式，降低原问题求解的复杂度。在具体的问题求解方面，通过引入凸优化、博弈理论（包括合作博弈、超模博弈、斯塔克尔伯格博弈等方法）、机器学习等方法，实现了对问题的求解，并实现了不同的分布式和子信道分配方案，从而验证了仿真平台的可行性。

3. 通过对 Femtocell 网络的基本原理、所面临的问题和关于 Femtocell 网络的绿色节能通信研究现状进行了深入的调研与总结，完成了《Femtocell 系统资源分配与调度策略研究报告》。

该项目所提出的 Macrocell-Femtocell 双层网络能效优化、容量优化以及资源分配算法，可以有效的实现网络资源的优化，同时，又可以实现干扰抑制以及用户 QoS 保障等目标。所提的算法具有复杂度低，可以有效的应用于实际环境中，具有很强的指导意义和现实意义。

认知无线网络中分布式波束成形技术的研究

研究单位: 北京邮电大学信息与通信工程学院
项目负责人: 郭 莉
项目组成员: 郭 莉，董 超，康天宇，姜伟鹏，陈雪艳，邓 英，伍 昆，鲁 卉，张秀权，王双双，胡冉杰，张 超，章建伟，张 芃，田雨静，刘文理，郝佳伟，雷梅男，张 君，刘昆仑，孟德丹，李佳祯，慕熹东

结题时间: 2017 年 3 月
该项目为国家自然科学基金资助面上项目（项目编号：61271178）。
该项目针对认知无线网络中的分布式波束成形技术进行深入研究，从而解决一直以来阻碍分布式波束成形算法在传统移动通信网络和认知无线网络中真正应用的若干关键问题。该项目紧密围绕基于分布式波束成形的认知无线网络和容量的分析、认知无线网络中分布式波束成形优化、载波同步、反馈机制四项关键问题展开研究并搭建仿真平台。同时，根据移动通信技术发展，将预定研究内容与5G关键技术结合，在5G场景下应用认知无线网络技术进行了探索，体现研究的前瞻性；并拓展研究了认知无线网络中存在的窃听隐患、安全通信机制和方法；探索了研究成果在紫外光通信系统中的应用。主要研究内容如下：

1. 在基于分布式波束成形的认知无线网络和容量分析方面：一方面研究应用干扰对齐技术，提升系统自由度增益，进而提升系统容量的方案。另一方面基于波束成形技术设计认知用户的和速率优化算法，从而达到或逼近认知无线网络的和容量界。

2. 认知无线网络中分布式波束成形优化问题的研究：从发射功率最小化和用户体验（QoE）优化两方面入手，设计了低能耗、高性能的认知中继网络波束成形算法，并将QoE优化目标和波束成形技术有机结合，提出有效的优化算法，回归通信质量保障的真正目的。考虑实际应用，进一步研究多个认知网络并存下认知中继波束成形问题，针对多认知网络加权均衡速率问题和物理层安全问题进行了全新的讨论。

3. 认知无线网络中分布式波束成形载波同步问题的研究方面：基于闭环和开环相位同步，分别提出了GAP算法和一种基于时隙往返的载波同步算法，提出了解决分布式波束成形载波同步问题的快速算法和模型。

4. 在认知无线网络分布式波束成形反馈机制的研究方面：从提高信道状态信息反馈效率和降低反馈信息开销两方面入手，提出了基于高效预编码算法和有限反馈波束成形算法的信息反馈方案。

同时，该项目进一步从主、从协作安全通信模型建立和低复杂度物理层安全算法设计两方面研究了认知无线网络中的安全通信机制。

灵活栅格光网络中频谱工程与认知频谱调控技术研究

研究单位：北京邮电大学信息光子学与光通信研究院
项目负责人：张杰
项目组成员：张杰，赵永利，郁小松，杨辉，张会彬，陈伯文，张佳玮，马辰，陈赛，尹兴彬，张楷，白巍，许丞，杨晓旭，王凯，白云，刘金艳，杜晓鸣，罗广骏，潘莹，肖明露，邓俊妮，杨浩，王新文，金紫莲，师亚超，李慧，朱晓旭，谭渊龙，孙勇，李吴泽，康佳辉，王菲，龚广宇，王硕
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61271189）。
当前光网络发展面临高容量、灵活性、能效性三方面的严峻挑战，研究灵活栅格光网络的高效频谱利用问题成为新一代全光网技术的迫切需求。该项目针对信息网络发展所面临的瓶颈制约和基础架构性挑战，从高效率、可扩展、低功耗、安全可靠的光层联网演进趋势出发，探索频谱高效全光网认知理论与实现机理，首次提出了频谱工程和认知频谱调控的创新思想，研究灵活栅格体制下的光网频谱工程策略、基于业务授权认知的频谱接入控制模型、
基于带宽属性认知的频谱按需分配机制、基于资源状态认知的频谱整合与重构方法等内容，解决光网络的频谱认知和频谱利用等科学问题，在体系架构、控管机制、全光应用等方面产生创新与突破，形成了灵活栅格体制下的光网络频谱资源模型、基于业务属性认知的频谱按需分配机制、基于资源状态认知的频谱整合与重构方法、基于灵活栅格的光即服务跨层优化策略四项创新成果。

围绕上述四个方面，该项目提出了灵活栅格光网络频谱资源描述方法、灵活栅格光网络资源虚拟化方法和灵活栅格光网络频谱聚合方法；设计了基于业务带宽的频谱认知分配方案、面向IP业务承载的光层流量疏导策略和基于频谱一致性感知的虚拟光网络映射机制；研究了灵活栅格光网络中基于频谱工程的资源重构机制、基于时域/频域多维碎片感知的业务多路径提供方法、基于控制器协作的多域软件定义频谱重构架构及策略；实现了光即服务跨层资源统一调度、基于光即服务架构实现跨层优化协议扩展、基于IP和光跨层保护的软件定义生存性组网。该项目在灵活栅格光网络中频谱工程和认知频谱调控技术上的研究取得了重要突破，为未来灵活栅格光网络中频谱的高效利用提供重要的技术支撑。

面向高清/超高清的感知视频编码及其并行技术研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：门爱东
项目组成员：门爱东，杨波，魏芳，叶锋，邸金红，涂钦，王辉祺，于洋，李敬娜，胡雪麟，徐俊，李翠微，高冉
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61271190）。
该项目组围绕“高效的感知视频编码技术”研究，主要研究成果如下：
1. 面向视频编码的视觉感知模型构建与建模：时空特性改进的恰可察失真模型、改进的显著性检测模型。
2. 基于视觉特性的感知视频编码框架：提出一种基于显著性区域优先的最小可察觉失真模型（SRP-JND）；提出了一种基于SRP-JND模型的感知视频编码算法；基于人眼视觉特性的率失真优化技术。
3. 基于视觉特性的视频质量评价方法：基于Psytechnics方法，提出了一种全参考视频质量评价方法；针对基于相似性（SSIM）图像质量评价。
4. 面向HEVC/H.265的编解码技术优化算法：CU划分快速算法；改进的帧率码率分配模型；HEVC的帧间快速算法研究；基于人眼主观特性的熵编码技术优化；环路滤波优化算法；HEVC中码率控制算法研究与优化；帧内与DCT变换。
5. 适用于高清视频的帧率上变换算法：在单向运动估计和双向运动估计两种框架的基础上，提出了两种帧率上变换算法FSTFRC和BLFRC。
6. 视频传输的丢包补偿技术：提出了一种基于样本和快速结构化的空间域错误隐藏改进算法；时域结合的错误隐藏算法。
7. 高清/超高清视频并行加速方案：完成了全I帧和全P帧的HEVC实时编解码系统，实现符合HEVC码流的全高清1080p实时编解码系统。
模分复用光纤通信系统中模式激励与模式转换的研究

研究单位：北京邮电大学信息光子学与光通信研究院
项目负责人：顾畹仪
项目组成员：顾畹仪,高立,兰名宏,喻松,张永军,蔡善勇,蒋天炜,聂松,韩佳骏,马晨星,汪远,田成辉,唐晓慧,安娜,齐晓莉,杜志超,王轶,廖屏,申静,卢健壕,李健,王天一,翟旭,李新
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61271191）。

该项目面向未来模分复用光纤通信系统发展的需求，对任意模式的高效激励和转换方法及控制条件进行了深入的研究，重点探讨了模式分布特征及理想模式传递函数，围绕基于空间光调制器和基于光子晶体光纤的模式控制方法，提出了多种高效率、低串扰、低复杂度的模式激励和转换的方法、技术和新型结构，建立了模式转换仿真平台和实验平台，通过理论分析、仿真和实验研究验证了所提出的方法和技术，这些成果可为我国模分复用光纤通信系统的发展提供重要参考，为下一代超高速率、超高频谱效率的模分复用光纤传输系统的发展提供有力支撑。

在基于空间光调制器的模式控制方法的研究中：从理论上分析了模场分布特点及其控制原理，推导了理想的模式转换传递函数，建立了4f共焦系统模型和菲涅耳衍射分析模型，提出并实验实现了空间频谱匹配、模场半径预匹配、联合相位和幅度调制、闪耀光栅偏射等模式控制技术。利用提出的这些创新技术，不仅高精度地实现了20多个高阶模式的激励或转换，而且实现了两种高效率、高精度的实验系统：利用单个空间光调制器实现4个模式同时激励并复用的实验系统和基于光学谐振的按需模式产生实验系统，为模分复用系统的发展提供重要参考。

在基于光子晶体光纤的模式控制方法的研究中：深入探讨了基于耦合模理论的光子晶体光纤的模式转换技术的理论基础，提出三种可实现模式转化的光子晶体光纤及模式耦合器的新型结构，设计了多个模式同时转换和复用的模块结构，并仿真验证了三种方案的可行性。仿真结果显示，三种方法均容易控制，并具有模块化结构，扩展性及控制性能良好。

基于光正交频分复用的波分复用光传输系统中非线性作用机理和补偿算法研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：乔耀军
项目组成员：乔耀军,徐艳飞,王万里,周骥,陈龙泉,王哲,杨秋虹,李明,王黎明,徐菲
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61271192）。
该项目主要研究内容如下：
1. 基于 OOOFDM 的波分复用系统中，单信道非线性作用机理。
2. 系统信道间非线性效应的理论模型、以及色散、非线性和偏振模色散等效应的相互作用机理。
3. 基于 OOOFDM 的波分复用系统中，非线性及其它损伤的联合均衡机理和系统总体性能优化算法。

该项目搭建了多个系统仿真和试验平台，深入研究了 OOOFDM-WDM 系统非线性效应的机理，提出了非线性效应的理论模型，有效地抑制和补偿了非线性噪声。依托该项目，搭建了一套完整的 OOOFDM-WDM 系统实验平台，对提出的非线性效应模型和非线性效应抑制算法进行了验证。

该项目取得的突破性进展如下：
1. 研究了相干 OFDM 系统中非线性噪声的统计分布，并首次发现了 PDM 16QAM CO-OFDM 调制的系统中非线性噪声的分布特性是偏离高斯分布的。在 PDM 64QAM CO-OFDM 系统中，随着欧式距离的增加，其噪声方差以及该噪声偏离高斯分布的程度都在增加。
2. 发现在相干光 OFDM 系统中，相位噪声较串扰噪声占主导因素，这一点正好与相干 QPSK 系统中相反。在 OFDM 系统中，相位噪声是最重要的损伤，需要进一步研究其补偿算法。
3. 提出了基于离散哈特莱变换扩展的强度调制直接检测非对称截断光正交频分复用系统。该系统相比传统系统具有更低的 PAPR，因此该系统受到更低的电域和光域非线性损伤，从而具有更好的传输性能。
4. 将中间非线性时间反转的光相位共轭技术应用到相干光 OFDM 系统中，与传统光相位共轭技术相比，非线性补偿效果更佳。

该项目为国家自然科学基金资助面上项目（项目编号：61271193）。
调制器和基于光子晶体光纤的模式控制方法，提出了多种高效率、低串扰、低复杂度的模式激励和转换的方法、技术和新型结构，建立了模式转换仿真平台和实验平台，通过理论分析、仿真和实验研究验证了所提出的方法和技术，这些成果可为我国模分复用光纤通信系统的发展提供重要参考，为下一代超高速率、超高速度的模分复用光纤传输系统的发展提供有力支撑。

2. 在基于空间光调制器的模式控制方法的研究中，分析了场分布特点及其控制原理，推导了理想的模式转换传递函数，建立了共焦系统模型和菲涅耳衍射分析模型，提出并实验实现了空间频谱匹配、场半径预匹配、联合相位和幅度调制、闪耀光栅偏射等模式控制技术。利用该项目提出的新技术，不仅高精度地实现了20多个高性能的激励或转换，而且实现了两种高效率、高精度的实验系统：利用单个空间光调制器实现4个模式同时激励和复用的实验系统和基于光学谐振的按需模式产生实验系统，为模分复用系统的发展提供重要参考。

3. 在基于光子晶体光纤的模式控制方法的研究中，深入探讨了基于耦合模理论的光子晶体光纤的模式转换技术的理论基础，提出三种可实现模式转换的光子晶体光纤及模式耦合器的新型结构，设计了多个模式同时转换和复用的模块结构，并仿真验证了三种方案的可行性。仿真结果发现，三种方法均易于控制，并具有模块化结构，扩展性及控制性能良好。

基于位置的量子密码学理论研究

研究单位：北京邮电大学网络技术研究院
项目负责人：高飞
项目组成员：高飞，苏琦，贾恒越，刘斌，黄伟，张伟伟，李丹，房玮，田国敬，李博，张可佳，王玉坤，王庆乐，刘锋
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61272057）。
该项目主要对基于位置的量子密码理论，特别是量子位置认证（Quantum Position Verification, QPV）的相关内容展开研究，主要内容如下：

1. 提出了多种新型 QPV 协议：发现了针对 QPV 的 no-go 定理及所攻击 QPV 协议模型中的四条隐含假设，通过打破一条或多条隐含假设，提出了多种不同于原先模型的 QPV 协议。其中部分上述协议能够抵抗原 no-go 定理所采用的瞬时非局域计算（Instantaneous Nonlocal Quantum Computation, INQC）攻击。

2. 提出了针对 QPV 协议的加强版 no-go 定理：虽然提出的部分新型 QPV 协议可以使 INQC 攻击失效，但发现它们都能被另一种更强大的攻击策略—超密 INQC 攻击所攻破，于是扩充了原 no-go 定理所攻击的 QPV 协议模型，提出了针对 QPV 协议的加强版 no-go 定理。

3. 提出了在攻击频率受限模型下安全的非同时性 QPV (Non-Simultaneous QPV, NSQPV)：在考虑 QPV 的实际安全性时，大部分学者都着眼于攻击者的量子存储能力；该项目提出了攻击者的攻击频率无法无限大这一实际问题，并设计了在该模型下安全的 NSQPV 协议。同时，还设计了一个具体的 NSQPV 协议在频率受限模型下的安全性。

4. 受到基于位置的密码协议启发，该项目设计了多种包括量子秘密共享、量子密钥协商、量子签名等不同类型量子密码协议。此外，还在量子密钥查询、量子随机数发生器等方面取得了一些不错的成果。
基于自保护模式的数据防泄密版权管理技术研究

研究单位：北京邮电大学网络空间安全学院
项目负责人：马兆丰
项目组成员：马兆丰，张为杰，周婕，黄建清，蒋铭，莫佳，闫玺玺，
黄勤龙，张德栋，范志强，唐鑫，王真，高宏民，胡平，
张婷，冯莹雪，何智灵，王红梅
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61272519）。
针对当前数字版权保护模型无法解决数字化资产制作者本人蓄意的复制、扩散和泄密数字内容等问题，该项目主要理论成果如下：

1.提出了基于自保护模式的内核态DRM安全信任模型，提出的CPSec Pre-DRM自保护模型是一种对被保护目标数据对象(Object)，通过设定特定的安全策略(Policy)，在目标数据对象生成、存储、转发的瞬态执行自动化(Automatic)、前置性强制保护(compellent)的信任模型，对数字版权保护做了更清晰的分类和刻画。

2.构建了可参数化的内核态数字内容自保护可信执行环境，在内核态通过透明加解密对特定的敏感数据进行加解密，并且可以方便的控制加解密文件的粒度。

3.提出了基于时空约束的数字资产防泄密版权保护安全认证协议，在用户与许可证中心之间采用动态实时密钥协商算法实现双向认证和动态许可申请，通过“时间、空间约束相关联”、“终端、许可服务器相认证”、“许可证书实时动态生成与发布”机制实现了许可的可区分安全管理。

4.提出了适用于大数量、动态域组的域密钥管理算法，采用双线性对构造了一个适用于大数量、动态域组的基于身份的域密钥分发算法。

5.提出了同时在线/离线模式的版权保护使用控制安全许可协议，支持用户在离线模式下对被保护内容的条件安全访问。

6.提出了多域环境下代理多重加密数据安全分发算法，采用双线性对构造了一个单向代理多重加密算法，并证明了其在标准模型下CCA安全性。

最终基于该研究的基础完成了一套数据防泄密版权管理与版权保护开发包，通过算法和协议安全性论证及实验方法，系统总结面向开放环境的敏感数据防泄密版权管理，给出了适合不同许可模式下的许可认证、授权等基础理论与方法，并总结出敏感数据防泄密版权管理的防泄密技术，同时，通过课题的研究给出了在实际应用中达到的包括安全性、可信性以及公平性等。

可靠性约束下的高收益云服务提供机制研究

研究单位：北京邮电大学网络技术研究院
项目负责人：杨放春
项目组成员：杨放春，王尚广，周做，孙其博，邹华，刘家磊，张俊娜，
朱齐亮，柳玉炯
结题时间：2017年3月
该项目为国家自然科学基金资助面上项目（项目编号：61272521）。

在云计算环境中，由于云服务请求的多样性与大规模性，使得已有的云服务虚拟资源供应不堪重负，导致云服务提供商的运营成本急剧上升；同时由于云服务请求的高度不确定性，导致云服务的可靠性急剧下降，为云服务虚拟资源供应平台带来了新的挑战。为此，该项目对能耗感知的虚拟机放置智能优化方法，云数据中心资源损耗最小化的可靠性保障方法，云服务可靠性增强的虚拟机冗余放置方法，及网络感知云服务组合方法进行了深入研究，主要研究成果如下：

1. 提出了一种能耗感知的虚拟机放置智能优化算法，在保障用户需求的前提下降低数据中心能耗成本。
2. 提出了一种云数据中心资源损耗最小化的可靠性保障方法，在保障可靠性的同时，降低云数据中心网络资源和存储资源消耗成本。
3. 提出了一种云服务可靠性增强的虚拟机冗余放置方法，在保障可靠性的同时，降低对核心层网络资源消耗成本。
4. 提出了一种网络感知的云服务组合方法，在保障组合服务质量的前提下，最小化数据中心网络资源消耗成本。
5. 实现了原型系统 www.webcloudsim.org。

基于激活力的复杂网络建模及其应用

研究单位：北京邮电大学信息与通信工程学院
项目负责人：郭 军
项目组成员：郭 军，邓伟洪，李春光，马占宇，徐蔚然
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61273217）。
该项目基于激活力的复杂网络建模方法及其在文本、图像、语音建模和癌症基因组分析等重要问题中的应用研究。主要研究内容如下：

1. 基于激活力的复杂网络建模方法，成功应用于文本中的实体关系抽取、词向量学习等问题。
2. 利用基于激活力的复杂网络模型对癌症基因组进行了分析，揭示了导致癌症的突变基因之间的相互诱导关系，获得了对癌症形成机制的更深入理解。
3. 探索了基于激活力的复杂网络建模思想在图像和语音特征抽取方面的应用，提出了多种更有效的图像特征抽取和建模方法，为图像分类、聚类、分割、标注、检索等应用问题提供了更有效的技术支撑。
4. 把基于激活力的复杂网络模型应用于大气污染源分析和大气污染扩散路径跟踪等环境监测问题中，较好地解决了数据时空分布不均衡情况下北京地区大气污染源头追溯问题。

此外，该项目还探索了非高斯数据建模和结构化稀疏建模等重要问题，在DNA甲基化分析、癌症基因表达数据聚类等问题上取得了较好效果。
基于儿童语言习得机制的语言接地技术研究

研究单位：北京邮电大学计算机学院
项目负责人：王小捷
项目组成员：王小捷，袁彩霞，鲁鹏，李睿凡，冯方向，孙超博，马学思，王序文，易炼，刘仲皖，钟可立，周雪，高明辉，吴国华，冷冰，李东亮
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61273365）。

人类语言习得与两个因素有密切关系，其一是与感知信息的关联，其二是与外部的语言交流。该研究旨在为这两者建立计算模型，并在机器人上进行验证。主要研究成果如下：

1. 提出了一种对应自编码器（Corr-AE）结构及一系列变种结构：该类结构将文本和图像两个模态各自的表示学习与双模态关联学习集成在一个联合模型中。也将此类结构推广到概率模型上，构建了对应受限玻尔兹曼机（Corr-RBM）。提出了在这些基础单元上构建深层多模态关联模型的方案及其学习算法。在三个公开数据集上的实验表明，这类模型比已有模型具有更好的获取图文双模态关联信息的能力。研究了以对比散度算法（CD）为代表的深度学习算法的收敛性，给出了新的收敛性条件，提出了平均对比散度算法（ACD），理论分析和实验结果表明其比对比散度算法具有更好的收敛性质。

2. 提出了一种排序可变形部件模型（RDPM）：该模型在DPM中引入排序形式的目标函数，证明了新问题是一个泛凹-凸规划问题，进而提出了一种优化算法。在公开数据集上的实验表明，RDPM具有比DPM更好的检测性能。在此基础上提出了一种对图像自动生成语言描述的模型，其不仅可以生成多句描述，还可以生成更完整的针对目标位置和目标形态的描述。

3. 提出了一种层次长短期记忆模型（HLSTM）模型及其变体来联合建模对话理解中的意图识别和槽填充任务，模型同时考虑两个任务之间的关联约束和层次性，实验表明了该模型具有比已有的一些模型更好的对话理解性能。

4. 提出了一种层次MDP对话管理模型：可以有效降低对话状态空间的规模。

5. 提出了一种利用语音识别N-Best结果而非单一识别结果进行POMDP观测概率估计的方法，实验表明其中有效提高机器对话的可靠性，缩短对话轮次。

基于上述多模态关联技术和人机对话技术，实现了一个面向概念学习的对话教学系统，初步构建了一个可以持续进行多模态语言学习的人机对话原型系统。此外，还实现了一个人机对话系统。

基于认知与极化信号处理的功放节能研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：冯春燕
项目组成员：冯春燕，郭彩丽，刘芳芳，张天魁，魏冬，王圣森，厉东明，孙学宏，聂尧，赵闻，陈硕，赵殊伦，吴晓彬，杨光伟，李若萌，刘瑶，贾松霖，苑津津，陈黛梦，王炳程，史建波
结题时间：2017年3月
光子辅助信道化的超宽带射频信号传输、处理和接收技术

研究单位：北京邮电大学信息光子学与光通信研究院
项目负责人：徐坤
项目组成员：徐坤，戴一堂，唐先锋，杨心武，牛剑，崔岩，张安旭，吴钟乐，谢晓军，闫励
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61271042）。

该项目面向未来电子对抗侦查中、超宽带射频信号的接收等应用，着重研究了利用光子技术对超宽带信号进行频谱精细划分、以及并行的进行高动态数字化接收等科学问题。主要研究成果如下：

1. 围绕超宽带射频频谱的精细划分，提出了基于高相干性双光学频率梳和IQ数字相干解调的“多超外差”接收技术。

2. 围绕光频率梳的产生，提出了全线性腔的“线性耗散孤子”技术。

3. 围绕超宽带、多载波的射频注入环境，提出了基于数字后处理的“多源非线性共同补偿”技术。

该项目搭建了基于双光学频率梳的超宽带射频信号信道化接收原理样机，实现了工作带宽覆盖0~18GHz，瞬时接收带宽5GHz，信道数目为10，单信道接收带宽500MHz；接收信号频率误差在1MHz以内，动态范围大于100dBHz2/3；相同的装置也可实现DC~20GHz范围内的频谱感知，将整个射频频谱划分为20个信道，每个信道的接收带宽为1GHz。
带宽为 20GHz，测频精度在 MHz 内，信噪比均值 64dB，信道频率响应具有良好的均衡性，各信道的无杂散动态范围均值优于 95dB•Hz²/³。

参与式协作感知关键技术研究

研究单位：北京邮电大学网络技术研究院
项目负责人：马建
项目组成员：马建，张波，宋峥，王文东，田野，熊永平，刘亚志，张俊松，段丁博，马德新，李雄，程龙
结题时间：2017 年 3 月

该项目为国家自然科学基金资助面上项目（项目编号：61271041）。
该项目针对参与式感知环境中的不同应用场景，对感知数据质量、参与者选择、隐私保护机制、激励机制、感知动作推荐等研究热点进行了深入研究，提出了一系列的模型、算法、应用等内容，主要研究成果如下：
1. 针对参与式协作感知中的能量优化定位算法与任务协作代理机制：提出了协作式低功耗定位技术和算法，节能式参与者选择策略、协作式参与者贡献评估和协作式感知数据聚合算法。
2. 针对满足参与式感知系统感知数据质量约束的最优感知数据采集策略：提出了基于时空单元的感知数据质量模型、多任务环境下的参与者选择算法，以及基于任务完成度和参与者打扰度权重的参与者选择算法。
3. 针对参与式感知中的激励机制：对已有的激励机制进行综述，提出了一种基于参与意愿和数据质量的参与者信誉度算法和一种基于需求能耗比的面相参与者的激励机制算法。
4. 针对参与式感知中的隐私保护机制：提出了基于多角色分机制的参与者隐私保护机制，基于 Biometric 的三因素远程身份认证协议，以及基于椭圆曲线加密的远程用户认证协议设计。
5. 针对数据质量和可信度保障研究：提出了基于时空分布的感知任务完成度评估算法和基于多方验证的数据验证策略。
6. 针对参与式感知应用研究：提出了基于参与式感知的热点事件检测模型和基于 Min-cut 算法的事件边缘计算方法。

多宿主特性与叠加网络共存环境下的多路径传输机制与友好性理论研究

研究单位：北京邮电大学网络技术研究院
课题负责人：王敬宇
课题组成员：王敬宇，廖建新，王晶，王纯，王敬宇，张磊，张乐剑
结题时间：2017 年 3 月

该项目为国家自然科学基金资助面上项目（项目编号：61271019）。
该项目建立了一套多路径传输理论基础和较全面的实施算法，包括多路径与链式结合的叠加网络传输控制、多宿主特性与叠加网络共享的多路径流量调度、基于博弈模型的友好多路径选择等三项核心功能与一个具有实际应用价值的异构多传输路径共存下的系统架构，保证多路径传输中资源使用的高效性与公平性，以及基于 Openstack+Opendaylight 搭建仿真环境验证新型机制的可行性。此外，该项目深化了有关传输资源和接入资源的虚拟化和重构机制的研究，提出了具有业务感知能力的接入资源的虚拟化机制、基于接入资源汇聚的多路径并行传输机制、业务信令流量的自适应控制等理论与机制。主要研究成果如下：

1. 设计了一种高效、可靠的通用多路径拥塞控制机制，支持多宿主特性与叠加网络共存环境下，考虑异构路径多样性进行多路径的选择；继续探索异构多路径并行测量技术，在满足精度需求的同时降低探测开销。

2. 研究了单业务中多路径选择自私优化目标与其他多路径传输的友好性，减少流量振荡和路径重新选择，保证资源使用的公平性，以避免资源的恶性抢占。研究了多路径选择的博弈模型，避免多路径选择机制对其他网络资源造成的恶性抢占。

基于一维同轴纳米结构中表面等离激元效应的量子光学现象及其应用探索研究

研究单位：北京邮电大学理学院
项目负责人：符秀丽
项目组成员：符秀丽, 杨俊忠, 唐颖, 张磊, 吴志培, 王文东, 班贵军, 钱静雯, 刘昭贤, 郭一飞, 徐科科, 申振广, 王杨, 胡正阳
结题时间：2017 年 3 月

该项目为国家自然科学基金资助面上项目（项目编号：11274052）。表面等离子体（SPPs）是沿着导体表面传播的波，当改变导体表面结构或介质环境时，SPPs 的性质、色散关系、激发模式、耦合效应等都将产生重大变化。因此，通过 SPPs 与光场之间相互作用，能够实现对光传播的主动操控。此外，表面等离子体纳米结构可以利用其表面等离子体的增强局域场与半导体等介质中的激子相互作用，可极大地增强一系列光学过程，如表面等离子体增强的光催化、光吸收和荧光效应。表面等离子体增强荧光、荧光共振能量转移和光学非线性过程，使得金属@介质纳米结构体系在理论和实验上都具有极其重要的应用前景。

该项目从实验上开展了贵金属、金属硫化物或氧化物半导体、金属@介质复合纳米结构的可控制备工艺研究并获得了系统的工艺参数；重点研究了所制备纳米结构表面等离子激元的光学性质，获得了光学性质的调控规律；从理论上研究了基于金属、石墨烯纳米结构中表面等离子激元的元激发特征和调制方法。
具有多层次拓扑结构的复杂神经网络聚类同步
和节律动力学研究

研究单位：北京邮电大学理学院
项目负责人：石霞
项目组成员：石霞, 吕卓生, 吴heimer, 吕永兵, 王媛, 张佳栋, 席文琪, 赵竞哲, 杨利超, 刘志衡
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：11272065）。
该项目基于非线性动力学的基本理论和方法，运用理论分析和数值模拟相结合的研究方法，着眼于具有多种非线性突触连接方式、多时间尺度和介观上多层次拓扑结构的复杂神经元网络，揭示了多种突触耦合的共同作用、突触连接的时延性和可塑性以及多层次的拓扑结构对于复杂神经元网络聚类同步和节律动力学的影响。主要研究内容如下：

1. 具有多种非线性突触连接方式的神经元网络的聚类同步和节律动力学，讨论了既有兴奋性化学突触又有抑制性化学突触的网络的簇放电同步和节律变化。结果表明抑制性突触耦合所占的比例决定了网络的同步能力，同时网络整体表现为短簇放电。

2. 突触可塑性对于神经元网络同步和节律的影响，研究了采用 Oja 学习规则的突触可塑性对于耦合神经元网络的同步以及节律转迁的影响，以及探讨了在具有可塑性的抑制性中间神经元网络中，时滞对于网络节律的影响。

3. 具有多层次拓扑结构的复杂神经元网络的同步动力学，通过建立多模块的随机神经元网络，讨论了离子通道阻滞对于多模块神经元网络放电有序性的影响，并且当加在模块间的神经元之间的耦合为周期性耦合时，结果说明周期耦合的频率和幅度对于网络的放电有序性影响重大，同时依赖于噪声的强度。

4. 应用耦合相位振子系统理论研究神经元网络的同步问题，通过相位约化方法得到了簇放电神经元的簇相位响应曲线，然后根据簇相位响应曲线以及神经元的膜电位时间序列数值计算得出两个耦合神经元的相互作用函数，最后根据相互作用函数从理论上给出相位同步状态的稳定性。

这些问题的研究为深入理解大脑神经系统感知和传递信息奠定理论基础，也能够为非线性动力学理论的进一步发展提供坚实的研究背景。

基于纳米尺度高折射率差亚波长光栅的硅基宽光谱增强型集成光探测器研究

研究单位：北京邮电大学信息光子学与光通信研究院
项目负责人：段晓峰
项目组成员：段晓峰, 黄永清, 刘凯, 尚玉峰, 蔡世伟, 胡劲华, 房文敬, 武刚
结题时间：2017年3月
新一代高速光通信技术的飞速发展，对光电子器件性能的要求进一步提升。基于高折射率差亚波长光栅结构的高性能光电子集成器件得到人们的关注。该项目设计并制备了基于纳米尺度高折射率差亚波长光栅的硅基宽光谱增强型集成光探测器。希望通过器件结构和工艺的创新，解决垂直型光探测器频率响应和量子效率的固有矛盾，使器件在长波长通信波段宽光谱范围内同时获得高响应速度和高量子效率。

该项目通过自主创新，成功制备了基于高折射率差亚波长的一维光栅、二维光栅和环形光栅；实现了非周期光栅对光聚焦和偏振特性的调控；构建了基于微纳尺度功能结构的光电子集成器件的设计方法；在此基础上，设计并实现了两种新颖的用于光通信波段的光探测器：一种是亚波长光栅反射增强型宽光谱光探测器。另一种是基于亚波长光栅的蘑菇型光探测器。在项目研究过程中形成了完善的理论分析方法与较为成熟的关键器件工艺。

主要研究成果如下：
1. 提出具有汇聚功能的 SOI 基高反射环形非周期亚波长光栅结构，制备了焦距为 6μm，焦平面反射光场半高宽为 0.89μm，数值孔径（NA）达到 0.93，反射率超过 90% 的环形非周期亚波长光栅；提出具有汇聚功能的偏振不敏感二维非周期亚波长光栅结构，制备了焦距为 6μm，焦平面反射光场半高宽为 1.338μm，数值孔径（NA）达到 0.66，反射率超过 82% 的偏振不敏感二维非周期亚波长光栅。
2. 提出并制备亚波长光栅反射增强型宽光谱光探测器，通过 BCB 镀合工艺，实现同心环形亚波长光栅与 InGaAs/InP 光探测器结构的集成。与没有光栅结构的光探测器相比具有 CC-SWGs 结构的光探测器量子效率提高 27.5%。在 3V 反向偏压下，具有 CC-SWGs 结构的光探测器在 1550nm 波长处量子效率达到 65%，频率响应 3dB 带宽达到 40GHz。
3. 提出并制备基于亚波长光栅的蘑菇型光探测器。首先，实现了同心环形亚波长光栅与 InGaAs/InP 蘑菇型光探测器结构的集成。量子效率提升 21.4%，频率响应 3dB 带宽达到 30GHz。随后，实现了二维亚波长汇聚光栅与 InGaAs/InP 蘑菇型光探测器结构的集成，满足器件偏振不敏感的设计要求，量子效率提升约 25%，频率响应 3dB 带宽超过 40GHz。

基于光纤模式复用的多维度传输理论及技术研究

研究单位：北京邮电大学电子工程学院
项目负责人：忻向军
项目组成员：忻向军，刘 博，孙娟娟，孙丹丹，田清华，邵 晟，张 琦，王拥军，郭 苌，张 博，王凯民，周 航，Rahat Ullah，李丽楠，张 琦，钟佩玲，史月琪，赵海远，宋丹丹，黎 梨，关晓宁，张焕宝
结题时间：2017 年 3 月

该项目为国家自然科学基金资助面上项目（项目编号：6127044）。

该多维度传输的关键理论和实现方案进行了仿真和实验研究，提出了高阶模与低阶模并存的模式激发方案，建立了多模光纤传输中的模间串扰理论模型，提出了基于非均匀模场分布的少模多芯光纤信道建模方案，以及将芯间耦合器和模间耦合器串联的少模多芯传输系统 MIMO 均衡器；针对多模多芯光纤提出了基于矩阵变化的 MIMO 均衡方案；建立了基于高阶调制格式、密集波分复用技术及偏振复用的模式复用系统链路仿真模型；最终搭建了大容量长距离 T比特 DS 传输实验平台。主要研究成果如下：
1. 设计了一种具有多阶跃的少模光纤作为模式复用系统中控制色散的传输光纤，能够用于模式复用系统的色散补偿。

2. 建立了多芯、多模空分复用系统的传输实验系统，并仿真分析了三芯均匀信道、三芯非均匀信道、三模均匀信道、三模非均匀信道、三模三系均匀信道、三模三芯非均匀信道的传输性能。

3. 提出了将芯间耦合器和模间耦合器串联的少模多芯传输系统 MIMO 均衡器，并建立了少模多芯复用系统的传输实验系统。

4. 建立了基于新型矩阵变换的 9×9 模式复用系统链路仿真模型，仿真验证了基于矩阵变换的 MIMO 均衡器，对于多模多芯传输链路中的损伤补偿效果明显，优于传统 MIMO 均衡器。

5. 建立了基于七芯光纤的光传输系统实验平台，完成了距离为 58.7km 的大容量长距离 T比特 DS 传输实验。

高速高频谱利用率的超正交光调制系统研究

研究单位：北京邮电大学电子工程学院
项目负责人：张琦
项目组成员：张琦，赵同刚，高英，田清华，赵睿，刘博，张丽佳，
姐云霄，王拥军，马健新，忻向军，王凯民，Rahat Ullah，郭栋，
李志沛，刘哲，慈欢，李明杰，方舟，赵海远，郑乐思
结题时间：2017 年 3 月

该项目为国家自然科学基金资助面上项目（项目编号：61275158）。高速光通信是光通信领域的前沿课题。该项目在研究多种调制格式实现机理和实验方法的基础上，对高速高频谱利用率的超正交光调制系统的关键理论和实现方案进行了仿真和实验研究。主要研究成果如下：

1. 提出了超正交调制格式信号的产生方法以及基于超正交调制格式高速光传输系统最优星座映射方案。

2. 提出了适合高频谱利用率超正交调制系统传输的各种信号产生方法以及调制解调方案。

3. 建立了高速高频谱利用率的超正交光调制系统理论分析模型以及单信道双载波 400Gb/s 超正交光调制复用系统实现方案。

4. 分析了超正交光调制信号通过光纤信道的性能，并研究了本振激光器线宽及输入功率对系统性能的影响。

5. 提出并建立了单通道 Tbit-千公里光传输实验平台，并进行了实验研究。

6. 提出了一种基于轨道角动量的超正交调制方案和一种基于光子预编码的 ROF 系统 QAM 信号产生方法，研究了反馈联合信道均衡的双相检测数字时钟恢复系统架构以及基于自相关特性的非线性噪声均衡。

该项目的研究成果将为进一步提高光纤通信系统的频带利用率、色散和非线性容忍度提供新方法，为实现高速、大容量、高效传输的光通信打下基础。
虚拟社区团购消费者行为决策及其群体福利最优研究

研究单位：北京邮电大学经济管理学院
项目负责人：宁连举
项目组成员：宁连举，刘薇，张生太，牟焕森，王旭辉，冯鑫，夏文，张莹莹，张欣欣，万志超，肖朝火，孙中原，王浩宇，刘自慧，孙韩，王伟，张玉红，闫春晓，张爱欢，段海燕
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：71271032）。

该项目基于SNA分析，结合社会网络结构特征，以虚拟社区团购为研究对象，运用SA、CA、CER等方法研究了结构化社会关系对虚拟社区消费者行为决策的影响机制，并以此为基础，研究了虚拟社区的消费者福利最优化问题，对比分析了不同类型的虚拟社区消费者福利问题。主要内容如下：

1. 虚拟社区团购网络结构特征分析：主要研究了虚拟社区团购的网络结构，对网络结构特征进行了分类和界定，视角重点从非自发交易情景下进行了体系研究。
2. 非自发交易的虚拟社区团购中消费者信息搜索过程模型分析：从信息搜索过程的三个阶段对消费者信息搜索过程中所体现的行为本质与特征进行体系化的研究。
3. 非自发交易的虚拟社区团购消费者决策过程进行了研究，构建了消费者购买决策模型，分析了消费决策所带来的整体福利及达到群体福利最优途径。
4. 虚拟社区团购交易成因及机制分析：分析了消费者虚拟社区购买过程中的影响要素，然后提炼出促成自发交易的关键要素，构建自发交易的指标体系。
5. 虚拟社区团购的网络结构洞对自发交易的影响机制：分析了虚拟社区团购自发交易中网络结构洞的影响作用，研究了自发交易各关键节点对虚拟社区团购自发交易行为的影响。
6. 虚拟社区自发交易消费者群体决策及福利最优研究：分析了虚拟社区团购社会网络中的意见领袖，研究了意见领袖对消费者群体决策的影响及其对实现整体福利最优化的引导作用。
7. 不同类型虚拟社区团购中消费者福利最优对比研究：通过多结构调研的实验设计，比较了各不同类型虚拟社区的消费者福利及其最优问题。

半导体量子点与微纳金属结构表面等离激元相互作用的研究

研究单位：北京邮电大学信息光子学与光通信研究院
项目负责人：刘玉敏
项目组成员：刘玉敏，俞重远，叶寒，王东林，周帅，伍铁生，赛玛，宋鑫，彭毅伟，宫慧，尹吴智，束长干，张文，吕宏博，叶春伟，何慧芳，汪洁，吴秀，田亮，马睿，陈蕾，刘昌，李瑞芳

结题时间：2017年3月
该项目为国家自然科学基金资助面上项目（项目编号：61272515）。该项目针对无线传感器网络节点故障带来的网络联通性、数据可信性等问题，从面向服务的角度出发展开无线传感器网络故障管理机制及算法的研究。在保障无线传感器网络的故障容忍能力前提下，研究经济性更好的覆盖控制算法，分别提出了针对 2-覆盖、2-连通、2-覆盖 k-连通故障容忍条件的中继器节点部署算法。因为无线传感器网络中的节点故障不仅会降低测量的准确性，而且会增加网络中拥塞、浪费有限的资源。因此研究无线传感器网络的故障检测方法，提出基于历史数据与邻居协作的故障检测方法、支持向量机回归预测的故障检测方法、基于系统参量关系的分布式故障检测方法、基于属性关系的故障检测方法。

为了判断出系统发生故障的具体位置以及故障原因，为下一步故障恢复做好准备，研究故障定位问题，提出基于贝叶斯网络推理的链路故障定位方法。针对故障恢复问题，提出了
基于遗传算法和主成分分析法的故障恢复算法。根据采集数据的特性以及无线传感器网络的网络特征，研究无线传感器网络数据恢复算法。综合考虑传感器节点数据时间和空间上的相关性，提出时空相关算法，恢复缺失的感知数据。

多速率移动传感网资源共享公平性研究

研究单位：北京邮电大学网络技术研究院
项目负责人：谢东亮
项目组成员：谢东亮，时岩，卢美莲，张雷，杨学斌
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61271185）。
该项目以移动Sink行为特性为切入点，研究移动传感网的资源分配和业务部署问题，建立适合大系统可扩展的多速率移动传感网资源共享公平性协同优化技术体系，包括多速率传感网控制机制、资源共享公平性分配机制、公平资源分配等三个方面，并在仿真环境进行验证。

针对智能移动终端技术的发展对移动内容的需求和流量的快速增长，该项目在形式上将研究内容扩展至车联网领域，并针对未来网络技术发展，在体系结构上将研究内容扩展至以信息为中心的网络（Information Centric Network）进行研究，以构建泛在感知交互、异构网络融合、动态服务适配的传感网系统为目标，深入研究节点和网络的群组性、移动性和社会性等特点，取得较好研究成果。

无线多媒体感知反应网络信息质量保障的关键技术研究

研究单位：北京邮电大学计算机学院
项目负责人：孙岩
项目组成员：孙岩，罗红，郭莹莹，孙怀波，李鹏，李亚涛，王鹏，张帅，程晨，于华龙，孙伟，米家龙，陈亮，陈聪
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61272520）。
该项目以无线多媒体感知反应网络信息质量保障体系为研究对象，主要研究内容包括信息质量保障体系、多源信息质量检测、信息质量评估与异常信息处理和信息质量保障机制验证框架。

1. 信息质量保障体系：研究重点集中于构建面向信息质量保障的无线感知反应网络结构和组网方式，提出了面向感知反应网络的资源标识映射模型和服务描述模式，同时针对感知信息和控制信息，提出了高效的规则引擎机制，并建立了可扩展的信息质量保障机制。

2. 多源信息的质量检测技术：针对感知网络中多类信息源的不同信息特征，重点研究信息质量的检测与评估方法，首先基于时空相关性对数据的可信度进行定量评估；然后针
对信息实时性质量要求，设计了自适应节点调度与路由机制。同时基于已有智慧楼宇系统中感知反应网络体系的分析，从用户的日常行为时间序列中找出用户的习惯模式，并设计了基标量数据信息的 SWRL 生成和推理方法。

3. 信息质量评估与异常信息处理：针对信息安全和信息质量设计了评估模型，为错误信息的诊断分析、定位故障根源、剔除不可信任信息等处理提供数据支撑。提出基于图像数据信息的隐藏技术和保留格式加密的数据服务，并研究具体的异常信息处理算法，针对具体故障类型，提出信息过滤、故障隔离、降低权限等处理机制，为信息安全和信息质量设计了评估模型，并设计了面向信息保护的服务资源自适应选择方案。

4. 信息质量保障机制验证框架：在多媒体传感器网络应用原型系统方面，设计并开发基于无线多媒体感知反应网络的智能楼宇管理系统作为信息质量保障验证平台，重点验证了所提出的质量保障机制、多源信息质量检测技术以及信息安全和质量评估机制。

在智能家居系统中，为了验证服务规则的正确性，提出一个轻量级的规则验证系统。主要包括：

（1）使用领域知识和概率分析来检测内容异常和规则冲突的规则验证系统；

（2）基于冲突情境分析的解决规则冲突的快速策略。

一维纤锌矿基异质半导体纳米结构的制备
及其光电特性的研究

研究单位：北京邮电大学理学院
项目负责人：王永钢
项目组成员：王永钢，陈建军，金光生，刘尖斌
结题时间：2017 年 3 月

该项目为国家自然科学基金资助面上项目（项目编号：51272031）。

半导体异质纳米结构的定向生长、可控合成以及利用其构建纳米器件一直是人们研究的热点与难点。该项目采用三步合成法制备出多种异质纳米结构。首先利用溶剂热合成法，最终合成出 Ag2S、Ag2Se、Cu2S、Cu2Se 等多种纳米颗粒。然后利用化学气相沉积法或溶剂热合成法制备出 ZnO、ZnS、CdS、CdSe 等多种六方纤锌矿纳米线。最后利用所合成的 Ag2S、Ag2Se、Cu2S、Cu2Se 纳米颗粒和 ZnO、ZnS、CdS、CdSe 六方纤锌矿纳米线为初始反应物，采用溶剂热合成法，以氢氧化钠或氢氧化钾的乙醇溶液为中间溶剂，最终合成出 Ag2S-ZnO、Ag2S-ZnS、Ag2S-CdS、Ag2S-CdSe、Ag2Se-ZnO、Ag2Se-ZnS、Ag2Se-CdS、Ag2Se-CdSe、Cu2S-ZnO、Cu2S-ZnS、Cu2S-CdS、Cu2S-CdSe、Cu2Se-ZnO、Cu2Se-ZnS、Cu2Se-CdS、Cu2Se-CdSe 等一维异质纳米结构。并通过改变实验条件包括初始反应物的种类、反应温度、中间溶剂、反应时间等参数，实现这些一维异质纳米结构的形貌、尺寸、成分可控。研究表明 Ag2S、Ag2Se、Cu2S、Cu2Se 纳米颗粒能生长在六方纤锌矿纳米线的极性端面，而不是简单吸附。此外，该项目还研究了半导体纳米材料与氧化石墨烯之间的相互作用。发展了一种简单的水热合成法，制备出各种的半导体-还原氧化石墨烯异质纳米结构，并详细研究了这类异质纳米结构的形成机理，光催化、电化学催化特性，实验结果表明这类异质纳米结构具有优良的光催化、电化学催化特性，其机理在于还原氧化石墨烯所具有的良好的导电性和化学稳定性。
多媒体传感器网络中目标多分类问题研究

研究单位：北京邮电大学计算机学院
项目负责人：刘 亮
项目组成员：刘 亮，段鹏瑞，赵 东，傅慧源
结题时间：2017 年 3 月

该项目为国家自然科学基金资助面上项目（项目编号：61272517）。
该项目对多媒体传感网络感知覆盖分析、目标分类与定位、协同计算与参与激励、视频机会传输、以信息为中心互联五个方面进行了系统研究，取得了系列成果：研制了多媒体传感器节点与无线多模网关节点平台，实现了多媒体传感器网络协同识别系统，以及信息为中心多媒体传感网系统，并在长城保护、城市交通等方面进行了应用。该成果有效解决了多媒体传感器节点的有限能力与多分类的高计算复杂度之间的矛盾，为多媒体传感器网络中的目标监控应用提供基础理论与关键技术支持，并为物联网的进一步研究打下了基础。

60GHz 毫米波通信系统先进信号处理机制研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：赵成林
项目组成员：赵成林，李 斌，孙梦巍，王鹏彪，马静雅，赵建飞，张 伟，
张 鹏，李 森，柳跃鹏，侯 猛，黄绍建，诸皓琨，马 强，
陆亭宇
结题时间：2017 年 3 月

该项目为国家自然科学基金资助面上项目（项目编号：61271180）。
该项目主要研究成果如下：

1. 针对功率放大器非线性估计与数据联合检测问题：基于粒子滤波方案设计了一种联合盲信道估计与信号检测算法，该算法能够有效地应对实际中非线性失真效应，通过消除误码率地板效应，显著提升了检测性能。

2. 针对载波频率漂移估计问题：结合卡尔曼滤波原理对频率变化进行预测和跟踪，提出了一种适用于对抗频率漂移的同步解决方案。所提新算法能够准确地追踪估计未知频率变化，从而确保了60GHz信号的可靠检测。

3. 针对传输链路的遮挡问题：提出利用两种方案解决60GHz通信中的遮挡问题：两路中继方案和虚拟反光镜方案，从而显著改善NLOS信道下网络吞吐量性能。

4. 设计了一种针对60GHz毫米波通信系统空间调制方法，进一步提出了一种高效的联合编码调制技术，通过优化其输出的星座分布，极大限度改善了存在射频功放非线性失下的传输性能。

5. 针对60GHz通信网络上行链路提出一种基于波达角的混合波束赋形技术，并在此基础上设计一种改进的最小均方误差算法，实现了复杂度与接收性能之间的折中。

6. 针对60GHz通信网络上行链路提出一种基于鲁棒化波束搜索的快速混合波束成形算法，从而能够抑制干扰，提高接收性能。
7. 针对 60GHz 通信系统中射频功率放大器的非线性问题，提出了基于方差特性空间调制编码优化方案，有效解决了离线优化方案每次需要进行离线数据发送而导致的系统传输效率下降的问题。

8. 针对 60GHz OFDM 通信系统中相位噪声的特点，有机融合了量子计算与遗传交叉的概率型搜索算法，提出了基于量子遗传算法的相位噪声补偿方案，显著提高了搜索效率。

9. 针对 60GHz 通信系统中频率选择性信道，分别建立非高斯噪声的多径信道通信模型和接收端数据缺失的多径信道通信模型。然后结合 60GHz 信道估计在不同场景下的模型，提出基于经验似然的信道估计算法，有效提升了数据缺失情况下的信道估计性能。

面向用户体验质量的无线网络资源优化研究

研究单位：北京邮电大学
合作单位：工业和信息化部电信研究院
项目负责人：郑侃（北京邮电大学）
项目组成员：郑侃，龙航，闫丽，潘峰，吴文君，张月莹，刘飞，贺媛，张颖恺，王静
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61271183）。
为了有效利用有限的无线资源给用户提供高质量业务体验质量（QoE），该项目展开了面向 QoE 的无线网络资源优化和设计，主要研究成果如下：

1. 统一的业务质量评价方法建立：该项目综合考虑多个客观因素以及用户主观因素，提出了一套统一的无线业务体验质量评价体系，该体系主要由三个步骤组成：样本采集、数据分析以及模型验证。利用该体系，选取典型的实时业务和非实时业务，分别对视频和网页浏览业务建立了 QoE 评价模型。

2. 面向 QoE 的无线网络优化设计：结合建立的 QoE 评价模型，该项目进行了面向 QoE 的无线网络优化设计。具体研究内容如下：
 (1) 单业务场景下面向 QoE 的无线网络性能优化：
 a. 基于载波聚合技术的 QoE 建模与无线网络性能优化；
 b. 基于大规模天线技术的 QoE 建模与无线网络性能优化。
 (2) 多业务场景下面向 QoE 的无线网络性能优化：
 a. 云协作网络架构下通信计算资源协同优化；
 b. 面向云业务的异构网络性能优化；
 c. 面向物联网应用的无线网络设计与优化；
 d. 基于毫米波通信的异构无线网络性能分析；
 e. 异构无线网络的基站部署性能分析及优化。
量子网络编码理论及其应用研究

研究单位：北京邮电大学
合作单位：北京电子科技学院
项目负责人：陈秀波（北京邮电大学）
项目组成员：陈秀波，徐刚，钮心忻，孙莹，李婧，窦钊，徐淑奖，宿愿，王明明，管晓伟，王连赢，康双勇，杨帅
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：61272514）。

网络编码是当前网络通信的热门研究方向之一。该项目主要针对量子网络编码理论及其应用展开研究。主要包括：量子网络编码基础理论与协议设计、量子网络编码理论在优化量子多方通信协议中的应用和量子网络编码在网络安全通信协议中的应用。主要研究内容如下：

1. 研究了量子网络编码基础理论与协议设计：
 (1) 研究了无环网络中的多单播问题（k对问题），提出新型的量子多单播网络传输协议；
 (2) 以广义蝶形网络为模型，构造了一类独立于经典解的量子网络编码协议；
 (3) 以若干具有瓶颈信道的抽象网络为模型，设计了基于测量的量子网络编码协议；
 (4) 利用蝶型网络，设计了量子合作多播的网络编码协议。

2. 研究了量子网络编码理论在优化量子多方通信协议中的应用：
 (1) 设计了高效的量子网络多方通信协议，如超纠缠浓缩协议，量子联合远程制备协议，非对称的量子信息分发协议等；
 (2) 利用量子网络编码理论提出了两个量子直接通信协议和容错确定安全量子通信方案；
 (3) 研究了多种新型量子秘密共享方案；
 (4) 设计了具有普遍性、低耗、高效的量子私密比较协议。

3. 研究了量子网络编码在网络安全通信协议中的应用：
 (1) 设计了量子no-go定理限制之外的高保真量子网络广播协议；
 (2) 设计了满足多种网络传输任务及安全需要的量子秘密传输协议；
 (3) 基于多量子比特GHZ态研究了多用户量子无线网络通信；
 (4) 研究了量子网络安全通信中量子态的秘密传输问题；
 (5) 研究了量子网络安全通信中多方量子密钥管理问题。

总之，该项目主要针对量子网络编码及其应用和量子网络通信中的协议及其安全性分析方法，解决了一些重要的关键理论问题，给出了一些有效的解决方案，为量子网络通信的发展提供了一些可借鉴的理论研究思路。
复杂爆炸场数值模拟物理特征可视化高性能计算与提取软件开发

研究单位：北京邮电大学
合作单位：北京理工大学
项目负责人：余文（北京邮电大学）
项目组成员：余文，张文耀
结题时间：2017年3月

该项目为国家自然科学基金资助面上项目（项目编号：11272066）。复杂爆炸场数值模拟物理特征可视化高性能计算与提取软件开发项目旨在直接从爆炸场模拟数据中提取感兴趣的对象、结构或区域等物理特征信息，数值模拟物理特征的可视化和快速处理、分析和提取。重点研究了复杂爆炸场的物理特征定义和特征描述、数值模拟物理特征的提取算法及高效、快速的可视化方法，展开了高性能计算与分子计算方面的研究。主要研究内容如下：

1. 对三维数据场：提出了一种基于等值面的流线放置策略，实现对等值面自身及其内部情形的观察和分析；提出了一种适用于流场可视化的三维流线照明方法，改善了三维流场可视化效果。同时，根据冲击波的物理属性及其在数值模拟结果中的特点，为不同介质分别设置不透明度传递函数，实现了三维爆炸场冲击波特征的检测与可视化处理。实现了特征可视化以及剖切显示功能等，使观察者能够多角度地了解爆炸场内部特征，为获取物理规律提供了有效的手段。

2. 对二维爆炸数据场：提出了一种突出特征的流场聚类简化方法，克服了原有方法只能将流场分割成多边形区域的不足。该方法采用流线而不是直线作为流场聚类的分割边界，并以流线间的相似性作为区域相似性测度，通过k均值聚类对流场进行分区，将有相似特征网格划分为同一区域，较好地保持了流场的流动模式特征。同时，提出了一种增强特征的流场方向性稀疏纹理合成方法。该方法不仅使最终的可视化图像具有比较明显的视觉焦点，而且使其可视化效果得到进一步加强。

3. 在高性能计算方面：将分子计算与经典图灵机相结合，先后开发了求解可满足性问题、集合覆盖问题、0-1背包问题等多个NP问题的分子计算仿真算法和程序。

4. 在硬件方面：发明了一种支持多值逻辑的三稳态RS触发器和一种支持多值逻辑的四稳态RS触发器，提出一种基于多值逻辑电路的地址译码方法和一种基于四值逻辑电路的数据译码方法，设计了一种基于电子的GTM硬件模型—DEM。

时间挤压不经济效应视角下的企业国际化与绩效关系：理论构建与实证研究

研究单位：北京邮电大学
合作单位：中央财经大学
项目负责人：陈岩（北京邮电大学）
项目组成员：陈岩，王成岐，何菊香，刘丹，彭志文，霍达，杨恒，张斌，徐睿阳，郭牛森，翟瑞瑞，李毅，郑江，徐慧慧
结题时间：2017 年 3 月

该项目为国家自然科学基金资助面上项目（项目编号：71273035）。

该项目以中国企业的特质性和独特的国际化经历为基本实践背景和理论创新的源泉，通过整合国际化决定因素理论、国际化阶段理论以及国际化与绩效关系的理论等从理论与实证上论证了中国企业国际化过程中的中国情境异质性特征（包含中国企业的国际化程度、国际化速度、国际化节奏、海外进入方式、国际化经验以及产品多元化等）对国际化企业绩效的影响效果、机制和路径，构建了时间挤压不经济“国际化决定论”的理论框架，并在此基础之上，发展了中国企业面向发达经济体国际化逆向技术溢出效应的理论探索以及开展关于建立中国企业国际化经营相对比较优势理论的探索。

该项目超越已有研究聚焦国际化程度对绩效影响的局限，从制度视角实证检验了国际化速度对企业绩效的影响，从多重门槛效应的视角，将海外进入方式、企业异质性作为“第三变量”考察其对企业国际化绩效的调节效应。该项目从产品多元化战略的视角，考察了对中国企业国际化程度与企业绩效的影响。对中国企业国际化的成功与失败做出了较为系统和深入的理论解释。

无线信道的建模理论与实验研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：张建华
项目组成员：张建华, 田磊, 王禹凝, 潘淳, 刘萌萌, 孙彦良, 李冲, 吴琳云, 谢镜, 郑航, 苗润泉, 邵一朔, 赵明, 曾明, 韩书平, 杜德涛, 宋冲, 王超, 胡志学, 大伟, 郑庆芳, 宋成鹏, 杨育捷, 王超, 胡明学, 姜涛
结题时间：2017 年 3 月

该项目为国家自然科学基金资助优秀青年科学基金项目（项目编号：61322110）。

为实现第五代（5G）移动通信系统的高容量、低延时等需求，充分利用空域资源的三维（3D）MIMO 和大规模（massive）MIMO 技术，以及高频段（6-100GHz）受到越来越多关注，而高速移动也成为 5G 应用场景之一，为支持这些技术的研发和应用，迫切和基础性的工作是对其传播特性的探究和理论建模。主要研究内容如下：

1. 3D/massive MIMO 信道传播特性和建模：搭建了支持高达 256 天线的 200MHz 带宽的测量平台，在北京、上海等地开展了室内外十余个场景、3.5/6GHz 等频点的数据采集，给出了真实环境下电波的三维统计特性，提出了将 2D 信道加入俯仰维后的 3D 信道建模框架，并导出交叉极化天线阵列的 3D 天线单元间空间相关性闭式表达式，结合理论分析和测量数据研究了 3D MIMO 在真实环境下的性能，研究了该特征在大规模天线时的空间动态特性，相关成果被 3GPP 采纳，形成 3D MIMO 的信道模型国际标准 TR 36.873。

2. 6-100GHz 信道特性和建模研究：搭建了支持高达 800MHz 带宽的 14/28GHzMIMO 测量平台，并完成室内外多个场景的测量，针对国内外大多数研究基于喇叭天线的方向性局限，提出和验证了全向天线数据采集对信道特性研究的重要性，并对参数化估计算法、人体遮挡特性和固定测量中的 K 因子等诸多方面进行了建模和仿真研究，2015 年应 3GPP 邀请加入“6-100GHz 的信道模型”兴趣小组(全球 15 个单位，亚洲唯一高校)，参与完成其白皮书和
TR 38.900 国际标准起草。

3. 高车速下的非平稳特性信道建模：推导了高速反射信道中发射角以及到达角的概率密度函数解析式，研究了多普勒功率谱密度及其时间自相关函数，分析了多普勒参数以及移动端周围散射体等因素对车对车通信系统性能的影响，并与实测信道进行了验证，给出了一种非平稳信道建模方法。

复杂网络上演化博弈模型的合作演化机制研究

研究单位：北京邮电大学理学院
项目负责人：李海红
项目组成员：李海红，程洪艳，代琼琳，杨俊忠，李宇婷，袁　地，鞠　萍，于　丹，陶水元，陶玉成，邹莹莹，巫年萍，冯月娥，韩文臣，解慧岩，王火东，陈长权，陈国栋，郭双建
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：71301012）。

演化博弈理论可以研究自私群体中的自发合作行为，而复杂网络上的演化博弈理论则为研究关系错综复杂的自私个体中的自发合作行为提供了一个强有力的平台。该项目致力于复杂网络上演化博弈动力学的理论研究以及寻找调控群体合作水平的手段。主要研究内容如下：

1. 研究学习规则对合作行为的影响。
2. 研究网络主动演化与博弈演化相互作用的共同演化的博弈理论。
3. 研究在二维平面上个体迁移下的演化博弈理论。

主要研究内容包括：

1. 研究了复杂网络上多策略博弈模型，并对迁移规则与博弈演化相互作用进行了研究。我们发现在多策略博弈中存在介观层次的物种“团”之间的竞争，这种介观层次的相互作用与涨落行为决定性地影响着生态系统中稳定共存物种的个数。
2. 在对囚徒困境博弈模型中，收益策略与相互作用策略的共同演化的研究中，发现了有趣的多峰分布现象，原因是系统在各参数下，多个吸收态之间的竞争。
3. 对网络上有限视野的追逐博弈模型进行了研究，得到在随机行走策略和重定位策略下，最短猎物种群生存时间与捕食者数量之间的幂律关系。
4. 在这一基金的支持下，我们还针对相关复杂系统的同步行为以及奇异态等进行了探索工作，并取得了一些成果。
信息中心网络的内容放置问题研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：黄韬
项目组成员：黄韬，刘江，王国卿，方超，张岩，霍如，陈清霞，许光军，向福林，王利，李将旭，顾莹
结题时间：2017年3月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61300184）。信息中心网络（ICN）已经成为未来互联网的重要发展方向之一，内容的有效放置成为影响ICN性能的重要因素。该项目针对集中式和分布式两种架构对ICN的内容放置问题展开研究。主要研究内容如下：

1. 在基于节点竞争力的分布式内容放置方面：提出一种基于相关性概率的ICN协作缓存策略，有效地提升了网络缓存的效率和缓存内容的多样性，增加了内容访问的命中率。

2. 在引入内容竞争力的分布式内容放置方面：设计了基于往返时延的能效缓存策略，当缓存大小变化时，该策略具有较好的收敛性能。

3. 在集中式内容放置方面：提出了一种新的缓存资源分配共享策略。以上研究成果对于信息中心网络的进一步研究和面向内容的网络缓存都具有重要的理论价值和应用价值。除ICN以外，服务中心网络、云网络、未来移动网络等研究方向都在探讨网内缓存的思想，因此内容放置问题的研究也对上述项目具有普适意义。

此外，该项目提出了一种基于主动推送的内容中心网络内容缓存与调度技术实现了基于内容网络的缓存内容主动推送，为网络终端移动、网络质量较差的情况下的缓存调度与配合技术奠定了基础。相关核心技术在NDN试验平台中得到应用，是我国三大NDN试验节点之一，并首次使用主动推送技术。此外，该项目通过将基于CCN的内容主动推送方法与SDN技术相结合，针对当前SDN不支持内容调度的问题，研究实现了基于SDN的通用内容调度技术及系统。

基于光子晶体光纤的亚波长光波导制备与非线性特性研究

研究单位：北京邮电大学信息光子学与光通信研究院
项目负责人：苑金辉
项目组成员：苑金辉，颜玢玢，夏民，桑新柱，王葵如，余重秀，魏帅，晋博源，康哲，张显廷，郭政，康帅，康雪
结题时间：2017年3月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61307109）。制备和研究亚波长芯径的光子晶体光纤(PCF)对纳米尺寸光电子器件的研制与集成化具有至关重要的意义。该项目主要研究亚波长芯径PCF的制备与非线性。该项目一方面修正非线性薛定谔方程，初步建立了能够分析短脉冲在其中传输时非线性动态的理论模型；另一方面制备了亚波长芯径的PCF，并利用其进行了非线性实验。也开展了硅基波导非线性、全
光模数转换的研究。

PCF 非线性：(1) 首次基于级联的四波混频 (FWM)，在 430 至 472 nm 的波长范围内高效地产生了反斯托克斯波；(2) 利用内模相位匹配技术，在可见光和近红外波段获得了反斯托克斯波和斯托克斯波，转换效率可达 21% 和 16%；(3) 基于 FWM，首次在中红外波段产生了斯托克斯波，其转换效率和带宽可达 26% 和 33 nm；(4) 基于高阶孤子分裂，在中红外波段同时产生了多个稳定的基孤子，可调谐波长范围超过 400 nm；(5) 利用表面非线性偏振，在近紫外波段产生了二次谐波，输出功率可达 520 nW；(6) 基于 FWM，在可见光和近红外波段获得了反斯托克斯波，将其应用于 CARS 显微谱学；(7) 利用掺镱 PCF，基于 FWM 效应，在近紫外范围内高效地产生了可调节的反斯托克斯波。

硅波导非线性：(1) 首次建立了一种同时考虑时间反转和时延特性的分数阶微环微分器理论模型；(2) 提出了基于微环内逆喇曼散射的可调分数阶微分器方案；(3) 提出了基于单周期光栅结构的参量波长转换方案，仿真实现了 -12.8 dB 的转换效率和 331 nm 的转换带宽；(4) 利用硅-有机物混合的水平槽型波导，在 C 波段实现了增强的调制不稳定性。

全光模数转换：(1) 首次提出了基于硅纳米晶波导的 2-bit 全光量化方案；(2) 提出了全光两级级联量化方案，在采用 8 个量化信道的情况下，仿真得到的信噪比和有效量化比特率分别为 33.58 dB 和 5.28-bit。

PCF 和硅波导非线性，以及其在全光模数转换的应用研究，将有效地推动可小型化、集成化的光通信和光信息处理器件的进步和发展。随着 PCF、硅基光子技术的不断进步，我们的相关研究成果有望为高速全光信号处理技术和超快光子学及其相关领域的研究开辟新的路径。

自适应多维度的无栅格光传输系统中关键问题研究

研究单位：北京邮电大学电子工程学院
项目负责人：刘 博
项目组成员：刘 博，张丽佳，田清华，忻向军，张 琦，赵同刚，王拥军
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61307086）。该项目围绕高速、高效、自适应的无栅格光传输系统的实现机制和方法，开展了一系列理论性和探索性研究工作，研究多维度可调无栅格光信号的传输机理、发射/接收方法以及相应的数字信号处理算法。主要研究成果如下：

1. 提出了一种基于多带滤波器组无载波幅相调制的动态无栅格传输系统：采用滤波器组抑制信带的旁瓣，降低多带之间的干扰，并且能够通过数字信号处理方法对系统的频谱结构、传输速率、调制格式和前向纠错码进行调节。

2. 提出了一种全光方法产生自适应无栅格光信号：省去了传统方式中必需的数模转换器，简化系统结构的同时也使光信号因器件的非线性特性受到的损伤减少。该方案可以根据光信号的链路损耗或信噪比损伤，将比特流映射到不同欧式距离的星座点上，之后通过星座复合，完成不同级别的星座映射。通过这种可变的星座排布，能够在同一个光信号上实现多种速率的混合传输。

3. 提出了一种基于自适应编码扩频的光信号传输方法：能够根据不同信道条件的扩展长度、频谱效率和信号速率提供动态扩频增益，改善信道信号的光信噪比。

4. 提出了一种频谱整形方法以抑制参量放大过程中强度转移噪声：由调节器控制噪声
将导致光信号中出现射频干扰，通过对光信号的频谱整形和处理，能够避免其对信号产生干扰。

5. 提出了一种基于分段调制的自适应比特映射方法：可以有不同的载波信道根据链路传输的性能产生速率灵活选择的星座映射。

6. 提出了一种基于动态衰减的前向纠错算法和基于反馈控制的自适应均衡信号处理算法：在接收端探测后对 SPM 和 XPM 进行联合补偿，采用了迭代算法优化相位因子，减小计算复杂度。

7. 建立了自适应无栅格的光传输实验系统：分别研究了采用脉冲光源和单频波长选择的超密集光源的方法，通过波长选择开关选取不同频谱结构的子载波信号。在该实验系统上，完成了研究方案的验证工作，包括光传输系统的模型、光信号光放发方案和相应的数字信号处理算法。

可调谐的低阈值拉曼分布式反馈（DFB）

脉冲光纤激光器研究

研究单位：北京邮电大学信息光学学与光通信研究院
项目负责人：施进丹
项目组成员：施进丹，伍剑，邱吉芳，邹明，王晓东，叶子
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61307055）。基于拉曼增益的单纤分布式反馈（DFB）激光器是一种新型的全光纤单频激光技术，只用厘米量级长度的带有 π 相移的分布式反馈无源光纤光栅，即可实现单频且全频段可调谐的全光纤激光器。并且，理论和实验研究了 DFB 激光器的四波混频 (FWM) 波长变换技术。该技术是产生新频率激光信号的一种非常有效的方法，在科研和工业领域，目前受到极大的关注。由于 FWM 效应需要满足相位匹配条件，为实现较高的 FWM 转换效率，需要将光纤的零色散波长设计在所用泵浦光波段附近，从而限制了光纤或泵浦光选择的灵活性，且提高了光纤的制造成本。基于 DFB 光纤激光器的 FWM 波长变换技术不仅克服了上述缺点，而且具有同时产生多波长、波长变换带宽范围广且灵活等特点。最后，深入研究了用以产生超短脉冲的被动锁模光纤激光器，通过波形整形，可以作为脉冲 DFB 激光器的泵浦源，实现低阈值、脉冲可调谐、高峰值和单频光纤激光器。主要研究成果如下：

1. 搭建了 DFB 仿真模型，分析了起振特征，阈值功率与光纤长度、光栅耦合系数和拉曼增益成反比；且与光纤损耗和模场有效面积成正比。利用高拉曼增益的碲酸盐光纤，可将光栅长度缩短到 10 厘米，且阈值功率低于 100mW，可直接用半导体激光器实现 DFB 单频激光器。

2. 实现了 30 厘米长的普通光纤单模激光器，线宽<2.2KHz，最大输出功率达到 1.6W，受限于所用半导体激光器总功率。此外，实验和理论分析了拉曼 DFB 激光器中的波长改变原理和性能，实现了>1100nm 波长变换带宽的高效四波混频技术。

3. 搭建了一台基于 SESAM 的耗散孤子被动锁模掺铒光纤激光器，实现多脉冲、谐波锁模及束缚态三种工作状态，并可以通过调节偏振片进行自由切换。

4. 搭建了一台基于 SESAM 的孤子对被动锁模掺铒光纤激光器，实现了孤子对锁模，并通过调节 PC 实现孤子对的多脉冲、谐波锁模及束缚态三种工作状态；观察到双脉冲工作状
态下光谱的新变化，并通过实验解释原因。

5. 搭建了一台基于 SESAM 的被动锁模掺镱光纤激光器，通过调节腔内滤波器，首次实现了六波长可调谐、谐波锁模。

6. 通过超短脉冲放大技术研制了一台高功率、超宽连续谱白光光源。

具有立体视觉的球形机器人及其运动控制方法研究

研究单位：北京邮电大学自动化学院
项目负责人：叶平
项目成员：叶平，孙汉旭，陈嘉真，王志吴，许世坤，仇仲江，高树会，韩亮亮
结题时间：2017年3月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61305126）。
球形机器人在野外作业、反恐及灾难救援和社会等领域具有广阔的应用前景。但是目前球形机器人的运动控制存在控制精度不高、累计误差较大和抗干扰能力差等问题，已经成为阻碍其进一步应用和发展的问题。项目以研究具有立体视觉的球形机器人的运动控制模型和控制的新方法。旨在利用立体视觉增强球形机器人的运动控制能力，实现具有外部感知的运动控制策略，从而提高球形机器人的运动控制精度。主要研究成果如下：

1. 设计并实现了一种可以搭载立体视觉的球形机器人机构。
2. 提出了一种基于非完整约束的球形机器人运动学分析与建模方法。
3. 利用模型解耦、线性化以及状态反馈等方法，建立了球形机器人的运动控制模型；提出了内环力矩控制、外环基于视觉反馈路径跟踪的球形机器人运动控制方法。
4. 提出了一种基于力矩控制的视觉与 IMU 融合控制算法。
5. 提出了一种基于立体视觉的球形机器人运动参数估计方法。
6. 提出了一种基于立体视觉的 IMU 融合控制算法。
7. 提出了一种基于立体视觉的球形机器人运动控制算法。
8. 研制了具有立体视觉的球形机器人原理样机 2 台。

面向协作生成服务的社交搜索研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：胡铮
项目成员：胡铮，张春红，朱新宁，田辉，闫强，唐晓晟，王庆，刘海峰，朱旭振
结题时间：2017年3月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302077）。
该项目的主要研究内容如下：
1. 社交网络用户的行为分析和建模：基于电信用户通话记录数据集，研究了用户的 Ego
Network 的拓扑 profile，在有向含权自我中心网络模型上，提出了吸引子平衡指数与强弱链平衡指数，设计实现了一种面向自我中心网络交互挖掘和用户通信模式展示的可视分析方法。

在不同社交网络上多维度的 social correlation 验证和应用方面，基于位置的社交网络数据集提出考虑时空社交影响的移动签到行为预测模型。

针对协作成果的社交传播的课题研究内容，项目立足微博的影响力传播或者营销这具有类似性质的案例场景，分析影响微博营销效果的因素。

在电信运营商用户通话数据集及 DPI 的网页浏览分类统计数据集上，开展是否存在用户通话社交的接近程度与用户兴趣相似度的假设检验。

针对数据发布的隐私保护问题，提出了基于图的普适隐私保护框架和基于图分割的隐私数据发布算法。

2. 面向协作关系的群体甄别算法：该研究给出一个新的用户相似度模型，该模型既考虑了与用户评分相关的小范围信息，又考虑了全局的用户行为表现。改善了在仅有少量评分可以用来计算用户相似度情况下下的推荐效果。

对用户的在线评分效果进行了分析，从而对评分效果不一致的现象提供一个合理的解释。从理论上验证了在线评分的相互影响并且提供了基本的基于在线评分的经营方法。

在用户相似性研究方面，并基于语义轨迹相似性来挖掘行为背后的背后的社交网络关系，发现校园用户社交关系，还可以扩展到移动蜂窝网络的探针数据的使用上。

在基于图的边连接或者相似性基础上的群体挖掘方面，完善了社团演化事件预测功能，通过路径预测思想削弱直接因素带来的不确定性从而提高预测准确率。

协作网络的异质网络特点明显，提出了一种随机路径采样的方法 RSSim，来解决大规模异质网络中对象间的相似度搜索问题。

在社交网络分析应用中，提出了一种基于资源利用率的性能瓶颈量化方法，根据作业负载执行过程中的各种资源利用率，来量化各种资源对执行性能的影响程度。

3. 基于协作成果预测评估的协作任务推送机制：基于开源推荐评分的数据集，数据分析发现，用户的兴趣偏好，虽然体现跟网络的相关性，但更多的是偏向一致性 consistence，而不是 social influence。基于此发现，提出了一种优化的推荐算法。

将用户生成服务与众包思想结合，在社会化协作任务分发方面，提出一种基于团队意识的社会化协作分发机制和方法，并申请专利。该方法主要用于找人协作的推荐系统，目的是向任务的发起者推荐能与发起者协作完成任务的其他人，推荐的指标依据便是协作者的团队意识。

协作找人搜索也可以基于知识图谱问答系统的方案来研究，如何对知识图谱进行表示从而对其进行补全引起了研究者们的广泛关注，该项目提出了一种改进的度量空间向量嵌入模型 TransHR，引入“关系变换”的理念。

于图匹配查询，怎么从海量的图信息源中快速的挖掘和查询出与查询图相匹配的子图是社交搜索应用中的一个重要需求。该项目提出了一种新的近似图匹配查询算法 ASMQ，实验表明 ASMQ 算法在查询时间和效率上都优于传统查询方法。

在应用时序模型的学习方法方面：基于电信社交交互数据，构建了三个基于时序序列的远期离网预测，同时考虑社交因素对用户离网的影响，将上述四个模型进行融合得到最终的混合模型。
基于光纤的高精度时频传输技术研究

研究单位：北京邮电大学信息光子学与光通信研究院
项目负责人：尹飞飞
项目组成员：尹飞飞，任天鹏，余重秀，韩松涛，陈略，张安旭，吴钟乐，王瑞鑫，张梓平，于海杰
结题时间：2017年3月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302016）。该项目立足学科领域前沿和国家战略发展需要，重点研究了基于光纤的大范围超高精度时间、频率传输的核心机理、技术途径与实现方法。应用于航天测控的高精度时频传输系统需要解决下面三个问题：
1. 基于光纤的长距离稳相传输。
2. 参考频率、时间信息，以及宽带射频信号同时传递。
3. 由中心站向多个基站进行时频信息的分布。

该项目主要研究成果如下：
1. 提出了一种基于可调色散延时的链路时延抖动补偿方法，可以获得大范围（和光纤传输距离成正比的动态补偿范围）、高精度的补偿能力。
2. 基于上述稳相传输技术，进而提出了一种宽带、多载波同时稳相传输的方法，可以通过单个参考频率将整个光纤链路的延时稳定下来，从而保证同时传输的其它信息（包括本振、时间信号、及其其它任意射频信号）的稳相传输，并使得这些信息共享参考频率的高稳相精度。
3. 基于上述宽带同时稳相传输的技术，提出了一种环网结构时频信息分发技术，可以避免传输而复杂的点对点分配技术。

该项目既在实验室环境下实现了关键技术和指标验证，同时也搭建了集成、小型化、软硬件结合原理样机。该样机在航天城飞行控制中心的相关平台上进行了长时间验证。

基于移动特征分析的异构车载网络移动性管理技术研究

研究单位：北京邮电大学网络技术研究院
项目负责人：时岩
项目组成员：时岩，谢东亮，高振翔，李志刚，乔利强，李保珠，鹿昌开，程李，辛庆云，周晓娟，张子奇，朱雪梅，陈滨，徐翔，孙王栋
结题时间：2017年3月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61300183）。移动性管理是保证通信连续性的关键技术。异构车载网络中多样化的通信场景和网络拓扑高度动态性，使得移动性管理面临功能和性能上的更多挑战，全面、准确地描述移动性特征及其规律是非常重要而又极具挑战性的工作，进而将其用于移动性管理关键技术研究，具
有重要的理论意义和应用价值。针对基于移动特征分析的异构车载网络移动性管理，该项目开展了相关理论与技术研究，提出了一系列创新的方案和算法，分析和验证结果表明所提出的方法能达到预期目标，具有良好的应用价值。主要研究内容如下：

1. 移动特征参数体系研究：从非时变特征和时变特征两个角度，从节点层、节点对层、群组层、网络层等多个层次，全面定义了车载网络中的瞬时移动特征及时间演化移动特征。

2. 移动特征参数分析和预测方法研究：基于三相交通流理论、网络科学方法研究移动特征参数的分析，对移动性管理技术的研究提供指导；提出移动接入预测、移动位置预测和链路预测方法，为实现主动、适变的移动性管理奠定基础。

3. 基于移动特征分析的移动性管理技术研究：以移动特征分析和预测为基础，提出了主机移动性和群组移动性管理机制，包括基于移动特征分析的动态分群、信息传播、路由与数据传输、数据卸载、MAC接入和切换优化，实现功能和性能优化。

物联网应用中隐私安全认证机制研究

研究单位：北京邮电大学网络技术研究院
项目负责人：李文敏
项目组成员：李文敏，国佃利，张硕，孙海燕，郭瑞，李雪雷，蒋芃，王心怡，邢旻鸿，路秀华，孙溢，于萍，李卫晶
结题时间：2017年3月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61300181）。

认证是物联网安全中的关键技术，能够防止未授权用户访问和使用物联网资源，是保障物联网安全的重要屏障。该项目针对物联网应用中的认证及其过程中的用户隐私保护问题，主要研究内容有：面向集群用户的隐私安全的批量认证机制设计、隐私保护的广播认证机制构造、具有条件隐私功能的群组转接认证问题以及域服务器半可信情况下保护隐私的跨域认证问题。

该项目主要研究成果如下：

设计了在eCK安全模型下无对的ID-AKA协议和在标准模型下基于标签的格基短签名方案，前者能够满足临时密钥泄露安全性质，并提高了方案的效率，有利于真实信息聚合，便于实现批量认证，后者采用了固定维数的格基代理技术，缩短了已有方案的签名长度，有利于集群用户的批量认证的实现；借助格基模糊身份签名技术，在一个逻辑步骤内实现了对广播数据的认证和加密，此外，利用复合阶的多重线性映射构造了一个能够抵抗合谋的公钥广播加密方案，在简单的非交互式安全假设下取得了适应性的安全性，并在此基础上得到了最优化的参数扩展量，适用于物联网应用中终端设备的广播认证；基于口令和生物特征等因素，设计了应用终端从注册服务器范围切换到访问地服务器服务范围时的转接认证方案，此外，我们在多服务器场景下设计了一个匿名高效的生物认证方案，并在严格的安全模型下对设计的方案进行了安全性证明与分析。在远程医疗系统中，分别基于哈希函数、模糊提取器与生物特征设计了安全的跨域认证方案与保护隐私的远端认证方案，实现了实体认证、保护患者隐私和保障了医疗数据的安全性；设计了一个双云服务器下的安全外包格密码加密数据的安全多方计算协议，被授权得知结果的用户只需要使用自己的密钥对收到的定制结果解密即可得到最终计算结果，而非授权用户不能获取任何有效信息，有效地保护了用户隐私信息，在此基础上还分别研究了可验代理加密的MABE方案与可以实现电路表达策略的具有代理可验性的混合密文策略属性加密方案。
基于系统层次结构的大图并行处理框架研究

研究单位：北京邮电大学网络空间安全学院
项目负责人：张熙
项目组成员：张熙，苏援，雷鸣涛，吴巍，蒋官宏，姚运涛，刘杨，张耘嘉，石嘉玮，曲思宇，段馨凝，刘芳华
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61300014）。

随着社交网络的兴起，基于大规模图结构上的计算、分析与挖掘，成为具有重要理论意义和应用价值的研究热点。该项目面向大规模图结构数据，研究如何高效处理、检索、分析与应用。主要研究内容如下：

1. 基于并行体系结构的大图划分与子图检索研究：包括在并行节点上的大图划分方法，子图增强技术，查询图分解算法、子图通信算法、顶点索引构建方法以及任务划分和同步机制等。基于该研究，第一次实现了在以顶点为中心的图计算模式下的子图检索和子图同构算法，八节点集群上可以将子图同构处理规模扩展到几十万甚至百万级。

2. 基于社交网络拓扑结构的信息传播算法：考虑消息间的相互作用和网络拓扑结构，基于进化博弈论和贝叶斯模型，分别提出信息传播预测算法，为促进或抑制信息传播提供了依据。

3. 基于顶点影响力的社团发现算法：分析了高度度节点在大规模网络社团结构中的特别作用，基于此提出了基于顶点可变影响力的社团划分算法。该算法可以根据实际应用场景和需求，调整划分的方案。

4. 并行体系结构的存储性能优化：该项目还对并行系统地城架构开展研究，力求提升存储系统的性能和效率。针对多任务并行存储空间分配的问题，提出了一种面向伪 LRU 算法的 cache 容量划分机制。针对新型相变内存和固态硬盘写延迟高的问题，提出了非对称的读写替换算法。所提算法都具有良好的性能和较低的存储和实现代价。

物联网环境下视频大数据处理平台设计理论与关键技术研究

研究单位：北京邮电大学计算机学院
项目负责人：张海涛
项目组成员：张海涛，高一鸿，魏汪洋，赵晓萌，杨贤达，付广平，唐毅，张闯，吴晓萌，严瑾，唐炳昌，孔祥起，高东海，赵彦，杨军杰
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61300013）。

该项目从监控视频大数据的分布式管理、分布式离线批处理、分布式流式计算、内容分析技术、平台体系架构设计、实现与应用 5 个方面开展研究，取得多项创新性成果，包括：面向视频监控的云存储体系架构；监控视频数据收集缓存机制；监控视频元数据组织与索引。
机制；监控视频离线分布式处理平台中主动数据放置方法；面向视频分析的离线分布式处理中间件；大规模交通监控视频元数据分析与校正方法；视频数据中心实时分布式处理任务管理与并行任务调度机制；基于 Spark 的高效在线监控视频处理框架；视频监控中基于组合特征的人脸重识别方法；基于活动事件时空重组的监控视频浓缩摘要方法；监控视频云计算平台资源预测方法；监控视频云计算平台多维资源分配算法；异构视频监控系统互连机制；监控视频云计算平台系统与典型应用。

泛在末梢环境中面向业务质量的多终端选择
与维护关键技术

研究单位：北京邮电大学网络技术研究院
项目负责人：芮兰兰
项目组成员：芮兰兰，孟洛明，嵇华，郭少勇，黄豪球，牛丹梅，张洁，王丽君，张攀，仵东涛，张兴，毛熹玥，穆楠，彭昊，肖科，史瑞昌
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302078）。
该项目主要研究成果如下:
1.面向业务质量的泛在末梢网络业务关系模型方面：提出了泛在业务实现的总体架构和业务网络关系映射模型。
2.满足业务质量指标的多终端选择机制和算法方面：面向单业务设计了基于多属性决策的多终端选择算法，面向多用户建立了均衡多业务质量的终端聚合机制及算法。
3.用户影响最小化的多终端动态维护机制方面：提出了基于终端干扰和链路稳定性的多终端协同维护机制、基于恢复节点的业务重传方法、基于信任评价的业务恢复方法、基于异常节点检测的业务路由重聚合方法。

该项目结合泛在末梢环境中终端能力有限及网络拓扑动态变化等特点，展开面向业务质量的多终端选择和维护关键技术的研究，为泛在业务提供最佳的网络资源配置，并维护业务的持续性和稳定性，对提升用户的满意度有极为重要的作用，具有重要的社会和经济意义。基于本项目提出的关键技术，项目组研发了面向泛在末梢环境的终端协作和管控原型系统，实现了对多种类型异构泛在末梢终端的管理和业务协同调度。

面向容量增强的分层异构网络资源配置与协同优化

研究单位：北京邮电大学信息与通信工程学院
项目负责人：李曦
项目组成员：李曦，张鹤立，孙文生，陈磊，谭志远，余智，刘博文，郭凤仙
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302080）。
分层异构网络具有覆盖面广、布网灵活、易于扩展、能耗低、成本低等优点，是解决宽带、高速、大容量无线接入最具前景的网络架构。然而，由于异构网络中小区层次较多，各层小区在分布密度、覆盖范围、服务能力以及处理能力等方面差异较大，因此存在干扰环境复杂、接入选择多样、小区间负载不均衡等问题：要抑制低功率基站引入的同层干扰和跨层干扰，需要实现子载波的最优分配；用户面临的接入选择较多，有必要设计合理的小区附着机制；在低功率基站间可能存在流量严重不均衡的问题。本课题的研究重点是：针对上述问题，围绕增强网络容量的核心目标，将复杂通信环境中的资源优化分配分解为相对独立又彼此关联的若干问题，分别提出子载波预测及自组织配置算法、分层小区附着机制以及蜂窝变焦策略，并对新型算法进行仿真，与已有算法进行比较，验证算法的可行性和可靠性。研究成果为分层异构网络实现更高速的接入、更可靠的运行和更科学的管理提供理论依据。

该项目研究了子载波预测及自组织配置策略、分层小区智能附着机制、多小区蜂窝变焦策略等各个方面要点，理论及算法结果以论文和专利的形式输出。同时，对现有算法和设计的新型算法、模型进行仿真验证。认知使能的蜂窝异构网络性能优化技术研究

研究单位：北京邮电大学电子工程学院
项目负责人：滕颖蕾
项目组成员：滕颖蕾，张勇，魏翼飞，刘洋，都焕辉，秦文聪，王小娟，袁得安，程刚，王雅莉，刘梦婷，李元峰，崔玲龙，于帅，李治，王颂阳，翁航，肖雅楠，王雪纯，秦文聪，李瑞卿，吴军甫，汤文杰，卢国锋，谷群，王影，郝丹妮，欧阳卫平，张琪，孙玮琦，赵万欣
结题时间：2017年3月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302081）。

该项目深入研究了认知使能的蜂窝异构网络性能优化技术，完成认知蜂窝异构网络中容量与覆盖联合优化，联合感知和接入的设计优化，认知分层架构的动态优化，D2D场景的传输协议优化设计方面的理论研究，并对所提模型、算法、方案进行验证，验证方案的可行性和有效性。主要研究成果如下：

1. 容量和覆盖联合优化的研究受到华为公司的关注，与华为专家进行多次技术讨论，相关算法以研究报告形式提交华为。

2. 认知感知和接入协议设计的部分算法应用于普天重大专项“广域覆盖低成本宽带接入组网技术与应用示范网络开发”在中国电网和石油的示范网。

3. 家庭场景的多接入优化，部分方案应用在腾讯的互联网云网络的设计中。

4. 用户QoE的评估方法方面，完成了一项CCSA标准化技术报告《家庭网络场景下相关业务的用户体验质量（QoE）方法研究》。

85
基于瞬时中继的多小区干扰对齐技术研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：王 强
项目组成员：王 强，许晓东，刘宝玲，靳 进，孙彦良，陈海云，徐 骥，邵 栋，孙 玉，李忠南，董 悦，赖宗霖，张康乐，赵军旭，韦 伟，胡 鑫，杨丽娜，齐 航，董敏华，黄健欧，王 怡，王浩锦，杨孝康，刘 茂，张文琦
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302082）。

针对多小区干扰这一关键问题，该项目从干扰对齐与中和的角度，研究基于瞬时中继的多小区干扰对齐抑制策略，通过信息空间及干扰空间的有效利用分配，形成多点传输下干扰对齐中和算法计算确定干扰信道下的容量近似，在此基础上进行可达自由度、中断概率性能以及设备通信的资源复用策略研究，为干扰抑制技术提供一个新的解决途径。主要研究内容如下：

1. 基于干扰对齐的瞬时中继干扰信道可达自由度理论分析。
2. 基于干扰对齐的多小区中继干扰信道编译码方案设计研究。
3. 基于干扰对齐的设备通信资源分配和干扰抑制策略研究。

针对多小区干扰网络，该项目提出有效的干扰对齐中继技术，刻画了瞬时中继信道的可达自由度界，分析了瞬时性不理想时全双工中继系统的中断性能分析。研究了信道信息反馈对干扰对齐技术的性能影响，并以此提出了一种信道信息反馈策略。进一步结合多小区协作传输，提出基于干扰对齐的对齐中继编码技术方案，减小非目标用户间的干扰，提高系统频谱效率和小区整体容量，并将方案应用于设备通信的场景，为蜂窝辅助设备通信这一未来重要移动通信应用场景提供一种解决方案。

基于频谱分布不均衡的协作通信机制研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：谢 刚
项目组成员：谢 刚，刘凯明，刘 芳，王卫民，苏 明，张洪光，范文浩，冉 静，高锦春，刘浩博，刘昌兴，胡根波，倪 枫，杨亚霖，张 帆，刘 硕，吴睿安，郭莽青
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302083）。

基于未来无线通信网络频谱高度短缺的环境下，对认知无线电的频谱检测、中继协作传输与调度技术和 Massive MIMO 信号处理等第五代移动通信的关键技术进行了深入研究，取得了较好研究成果。

该项目对存在频谱空洞的认知无线电节点传输机制开展研究，在宽带认知无线电的频谱检测技术、中继协作传输与调度技术和 Massive MIMO 信号处理技术三个方面取得较好研究进展，提出了基于似然函数估计以及基于多级维纳滤波器结构改进 MDL 准则的宽带频谱
基于压缩感知的分布式无线网络研究

研究单位：北京邮电大学信息与通信工程学院

项目负责人：徐文波

项目组成员：徐文波，林家儒，王思野，马金明，田耘，张晓波，李志霖，崔宇鹏，秦垒垒，李丹青，曹英培，曹坤，王储，张聪，刘利田，王一凡，张晋鹏，姚凯，闫之华，申涛，汤文，吕洋

结题时间：2017年3月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302084）。

该项目研究基于压缩感知的分布式无线网络，包括：基于压缩感知的网络传输模型及系统优化方法、接收端信号重建方法及理论性能分析、衰落信道中压缩感知方法。主要研究内容如下：

1. 在网络传输模型及系统优化方面：首先，针对译码中继分布式系统，提出了基于压缩感知的发送端编码、中继端转发及接收端译码方案，推导出不同方案的系统可达速率。其次，针对放大中继系统，根据所使用的不同测量矩阵设计优化译码策略，推导出系统可达速率。随后，针对认知网络多个中继主用户信号设计传输策略并推导了网络中断容量。最后，针对压缩采样发送端，提出了分段模拟信息转换器和对角调制宽带转换器，直接从模拟信号获得低维数字采样，并实现了典型压缩采样结构的硬件平台。

2. 在信号重建方法及理论性能分析方面：首先，在存在多个量化转发中继的分布式系统中，提出发送端和中继端的编码方案，并利用信号在编码域和采样域的分集提出两种联合译码方案。其次，基于单比特量化机制，提出适用于多节点网络的分布式压缩感知方案，有效降低了每个节点的传输数据量。另外，基于稀疏信号的先验信息，提出了多种压缩感知重建算法。最后，针对压缩感知传输系统同时受到密集噪声和稀疏噪声影响时，推导了重建支撑集合的理论性能。

3. 在衰落信道中压缩感知方法研究方面：将衰落对系统传输的影响建模为扰动压缩感知，并针对完全稀疏信号和强衰落信号，基于有限等距性质推导了联合正交匹配追踪算法的重建性能。另外，针对时变衰落信道中的压缩感知数据传输过程进行优化设计，通过将衰落信道的影响建模为测量矩阵的扰动，在接收端使用压缩感知扰动重建算法，构建出一种有效而可靠的重建机制及信道重建结构。

该项目所提出的信号处理方法具有理论和仿真支撑，具有良好的性能，为压缩感知在分布式无线网络中的应用做出了重要的贡献。
支持下一代 WLAN 标准 IEEE802.11n/ac 的光载无线技术研究

研究单位：北京邮电大学信息光子学与光通信研究院
项目负责人：李建强
项目组成员：李建强，张永军，裴寅清，樊宇婷，陈皓，雷艺，宋骁雄，郑月
结题时间：2017年3月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302086）。
该项目主要研究成果如下：

1. 提出了一种多RAU条件下WLAN吞吐量模型和网络性能快速评估机制，建立了基于马尔可夫过程的WLAN-over-fiber退避机制模型；提出了一种多RAU条件下WLAN-over-fiber冲突避免MAC机制，改进型的PCF算法考虑了光纤长度因素的轮询算法，在隐藏节点丰富情形下，可以很好的避免不同RAU下站点间的碰撞问题；提出了一种基于基于监测-交换的多RAU冲突避免的解决方案，分别考虑了用户数量、分组长度、光纤长度等因素，实现多RAU场景下的吞吐量性能提升。

2. 分析了多频带直调和外调光载无线链路的非线性特征，详细研究了其AM-AM和AM-PM失真特性，进而提出了多维记忆多项式模型对链路非线性行为进行建模；提出一种基于基带数字信号处理的多维预失真技术，补偿多频带光载无线链路的非线性，提高了系统的传输功率效率；提出了多频带数字后失真技术，基于多项式非线性模型，既考虑频带内失真项，又考虑频带间的交调失真项，提高了多维峰值削减技术，在数字域减小信号的峰均比，使信号的工作点更接近线性区域。对于多频带信号，考虑对应时刻的总功率，根据总功率的大小来决定如何进行峰值削减，而不是根据单一频带的信号功率进行判断，进而结合多频带数字预失真技术，提高系统传输功率效率。

3. 提出了基于空分复用的MIMO无线信号多模光纤传输机制，利用多模光纤LP01和LP11a/b三种模式承载MIMO不同信号流；搭建了基于多模光纤的3x3 MIMO传输系统，802.11ac标准64QAM信号经过1km传输，EVM性能满足标准要求；提出了基于空分复用的无线MIMO信号多芯光纤传输方案，并利用5km的七芯光纤搭建了6x6 802.11ac MIMO信号ROF传输系统。

4. 针对分布式MIMO光载无线系统中各路光纤时延差以及功率差对系统性能的影响，搭建了基于ROF 2x2 802.11n MIMO传输系统，并对光纤时延差、接收功率差等MIMO双路不均衡问题进行了深入研究。

5. 提出了一种基于空间分集的分布式光载RFID系统，引入光器件光子灯笼用于空间复用，利用光子灯笼在合路方面损耗低的优势将其用在对功率敏感的上行链路中，提高系统整体的读取性能；提出了一种数字与射频信号混合光载传输系统，将用于传输的射频信号与用于监测与管控的数字信号通过副载波复用的方式在同一光载波上传输链路，实现了对远端天线单元工作状态的实时监测和网络管理与优化。
基于协作转发和协作干扰的物理层安全技术研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：龙 航
项目组成成员：龙 航，赵 慧，张玉艳，郑 强，陈家均，张颖恺，张晓莉，张诚诚
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302088）。
该项目结合了协作通信技术和物理层安全技术的优势，研究以系统保密容量为优化目标的协作中继和协作干扰技术。并考虑现实通信系统中的合理化假设，研究基于非完美信道状态信息的物理层安全技术方案设计。主要研究内容如下：
1. 提出了单向多中继窃听系统中基于部分信道状态信息的协作中继技术方案。
2. 提出了双向单中继窃听系统中的协作中继技术和协作干扰技术方案。
3. 在 4 节点双向中继窃听系统中，基于多天线技术，提出了一种完全无需窃听节点信道状态信息的安全提升方法。

基于 SDN 特征的虚拟网络映射问题研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：刘 江
项目组成成员：刘 江，张健男，丁 健，王 健，王国卿，李将旭，张 岩，张 晨，顾 莹，张 歌，王 利，于 洁，辛远铭，李婕妤，陈天骄
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302089）。
未来网络领域中，网络虚拟化技术是重要的研究方向，软件定义网络（SDN）思想的提出更是为该方向带来了新的发展机会。该项目主要研究网络虚拟化中的虚拟网络映射问题和 SDN 控制平面优化技术，同时构建原型系统。主要研究内容如下：
1. 为虚拟网络映射问题进行了重新建模，将之主要分为了基于节点连接关系和基于实时拓扑信息的虚拟网络映射问题；这一模型为之后的研究打下了基础。
2. 为了提升虚拟映射性能，设计出基于模型耦合的一步式虚拟映射算法；为了实现算法复杂度与性能的有效权衡，设计出基于优化目标直接耦合的分步式虚拟映射算法；
3. 建立了基于 C 语言的设备仿真平台 CNVP 和基于 OpenFlow 的硬件仿真平台，分别对该项目提出的方法和映射算法进行仿真与验证，并反馈指导模型和算法的设计。研究结果形成了从理论到实践上均适用于 SDN 的虚拟映射体技术整体技术方案。
该项目深入研究了其中虚拟映射重新建模，虚拟映射算法优化和虚拟映射算法仿真环境构建与验证分析问题。
部分信道信息下 SVC 可伸缩编码分层组播传输新机制

研究单位：北京邮电大学信息与通信工程学院
项目负责人：张鸿涛
项目组成员：张鸿涛，刘洋洋，王玉良，杨梓华，孟娜，李榜旭，陈莹，牛沐楚
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302090）。

无线多媒体网络中，多媒体业务种类繁多、流量大、QoS 需求各异，为了从根本上解决无线组播系统频谱有效性和功率有效性问题，满足系统多媒体应用多样化和高带宽需求，该项目从无线传输技术方面进行创新，针对分层组播技术，流媒体传输以及基于 Qos 保障的传输机制这 3 个方面进行了深入研究，主要研究成果如下：

1. 无线分层组播传输新机制研究：首先针对组播组用户位置随机分布及动态变化，导致部分用户的信道状况变得很差，而组播系统容量受限于最差信道用户等现有系统存在问题，重点研究无线组播系统分层传输组播新机制，最大限度的匹配无线信号的广播特性及挖掘高SINR 用户的信道潜能。该项目提出了面向服务质量质量和面向用户分级的无线组播资源调度方法，以及基于多中继传输的叠加编码协作分集方案；进一步运用信息论，对系统的频谱效率和功率效率进行理论分析；对虚拟 MIMO 系统以及中继通信系统中的编解码和多址以及 D2D 等相关技术进行了探索和分析，确保系统的鲁棒性的同时提升系统的 QoE。

2. 超密集网络中基于虚拟小区的设计的流媒体业务传输新机制研究：基于超密集网络（UDN，Ultra-Dense Network）提出了相关移动性管理方案，考虑了 Backhaul 的 TP 选择和负载均衡以及动态分簇和用户轨迹预测等方案，并进行了相关的理论分析；同时通过引入虚拟小区的设计，使得网络中不存在小区边缘用户，保证了每个用户在使用高速率流媒体业务时有较好的用户体验。

3. 用户为中心网络基于 QoS 保障的传输新机制研究：为了保证用户使用流媒体服务时的连续性，减小用户时延，该项目在以用户为中心的网络（UCN，User-Centric Network）场景下进一步研究了基于双链接、功率控制、Cache 部署等技术的设计方案，提升系统各方面的性能从而改善用户体验，保障用户 QoS 性能的一致性。

基于真实隐喻的儿童交互式学习环境研究

研究单位：北京邮电大学数字媒体与设计艺术学院
项目负责人：吕菲
项目组成员：吕菲，侯文军，杜一，陈毅能，路璐，何致奇，蒋之阳，黄进，范俊君，姚乃明，路璐，谢佳雯，龙腾，孙染，高博，满天威，郭慧敏，梁耀元
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61303162）。

该项目主要研究内容如下；
1. 在用户模型研究方面：提出了基于神经计算的多通道交互模型和基于肢体交互的运动模型。

2. 在界面模型研究方面：提出了基于真实感框架的自然用户界面设计方法和基于肢体交互的菜单组件构建方法，并提出一个用户界面组件优化模型 UCOM。

3. 在算法及平台研究方面：提出了基于加速度传感器的角色动作控制算法和以动作方向变化控制音符播放的算法，设计和实现了一个交互式工具箱，并基于模型驱动理论，提出一种模块化、层次化的描述语言 DVL，开发了界面生成平台 DVIZ。

4. 在应用系统研究方面：设计并实现了基于真实隐喻的交互式学习系统 Flying Kite 和 EnseWing，其中 Flying Kite 支持包括儿童在内的用户利用肢体动作学习并体验放风筝活动。实验表明该系统在出错频度、易学性、愉悦度和自然度方面均表现出色；EnseWing 系统则能够帮助未经过音乐训练的儿童学习和体验合奏，培养儿童的音乐素养和协作意识。两个月的实地研究结果表明，EnseWing 能够帮助儿童获得与传统器乐合奏相似的合奏意识和技能，并大大降低了儿童参与的门槛，提高了学习效率。

该研究的成果为基于真实隐喻的儿童交互式学习环境的设计提供了相关理论和实践指导。

面向精密操作的太空机械臂低速级联定位
与非同位振动控制策略研究

研究单位：北京邮电大学自动化学院
项目负责人：褚 明
项目组成员：褚 明，魏楠哲，张宜驰，温玉芹，孟庆川，贾 捷，鞠小龙
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：51305039）。

太空机械臂的精密操作能力决定了其执行太空操作任务的复杂度和成功率，分析串联式多柔体系统的动力学特征并设计出自高精度控制策略，具有重要的科学意义和工程应用价值。

该项目建立了低速传动关节包含全局级联柔性和局部摩擦非线性特征的动力学方程，基于动态曲面控制（DSC）技术和自回归小波神经网络理论提出了一种无需依靠摩擦模型的智能控制策略，实现了非线性传动关节的精密定位。在某型太空机械臂地面关节样机上开展实验研究，结果表明：在消耗等能量的前提下，较之常规 PID 控制方法所提出控制策略的定位精度提高了 60%。面向太空大柔度可展低频构件的非同位振动特征，基于全局滑模理论提出了一种鲁棒控制方法，无需附加额外的作动器，仅依靠关节力矩即可实现非同位振动抑制作。在某型太空机械臂等效样机上开展实验研究，结果表明：残余振动振幅降至振动抑制前的 20% 以内，收敛时间缩短至抑制前的 20% 以内。以上控制策略的研究成果，为解决串联式多柔体动力系统的高精度定位问题，并实现太空机械臂的精密操作提供了理论参考和工程借鉴。
40Gb/s/λ WDM-PON 调制及相干数字接收机
关键技术研究

研究单位：北京邮电大学信息光子学与光通信研究院
项目负责人：张治国
项目组成员：张治国，陈 雪，闫 峥，鞠 诚，刘 娜，张颖洁，何 晨，孙艳飞，刘琪伟，蒋 旭，王佳和，张冰冰
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302079）。

该项目面向 WDM-PON 系统需求，克服现有 40Gb/s 光传输技术结构复杂，成本较高等不足，提出适用于 WDM-PON 系统的 40Gb/s 光传输技术方案。主要针对单波长 40Gb/s WDM-PON 系统中上下行高频谱效率调制码型及产生方案，接收机均衡算法及 WDM-PON 环回系统搭建等展开了研究，具有重要的研究价值。主要研究内容如下：

1. 通过仿真研究改进型双二进制 Nyquist-16QAM，Nyquist-4PAM，PM-DQPSK 等高阶调制码型的频谱效率，色散容忍性，接收机灵敏度，系统复杂性与成本等关键指标并进行综合对比分析，提出适用于 40Gb/s/λ WDM-PON 上行传输的 EA 调制的改进型双二进制调制码型及基于 IMDD Nyquist-16QAM，Nyquist-4PAM 等简单，低成本，易集成的下行传输方案。

2. 提出了一种适用于多种调制格式的反馈式全数字时钟算法，并设计采用多入多出结构的并行时钟处理算法，为有效补偿光纤色散，信道噪声，非线性效应等对信号的损伤并降低 DSP 芯片速率；提出了一种基于间隔样值并行滤波和利用累积误差并行更新抽头系数的自适应并行均衡和偏振解复用算法，并采用并行算法来补偿频偏和相偏，为解决时钟同步与自适应均衡相互的制约关系；提出了一种全数字时钟同步和压控振荡器/VCO 时钟同步与自适应均衡-偏振解复用联合并行处理机制，使两个模块相互配合，仿真结果表明：所提并行处理机制能有效的进行时钟同步和自适应均衡，并且能降低 DSP 处理速率。

3. 创新搭建了联合光与电均衡的上下行波长重用的单波长 40Gb/s Nyquist-16QAM WDM-PON 实验系统，实验结果显示该方案可实现 45km 的有效传输；创新搭建了基于可调谐激光器和上下行波长重用的单波长 40Gbps PM-DQPSK WDM-PON 长距离传输系统实验，实验结果表明所提的 PM-DQPSK 传输方案可支持 100km 的传输。

基于网络演算的通信系统建模理论及特性研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：高月红
项目组成员：高月红，张 欣，桑 林，李职杜，李鹏翔，张 萌，蒋文婷，陈 冠，张 燕，蔡凤恩，成 雷，许九旭
结题时间：2017 年 3 月

该项目为国家自然科学基金青年科学基金项目（项目编号：61300185）。
该项目致力于解决通信系统服务性能分析建模难的问题，综合考虑数据业务到达和系统
服务的随机特性，以通信网络 QoS (服务质量) 为保障目标，利用网络演算理论构造准确的通信系统服务模型和分析模型，实现对通信网性能的准确分析，并通过现网数据匹配并校正理论模型，为网络的流量控制、网络优化的参数配置提供可靠的理论指导。主要研究成果如下：

1. 构造基于网络演算的通用并联服务器模型和 QoS 分析模型；以单业务信道场景为基础，分析多业务信道通信网络的服务特性，构造通用化的多业务信道服务模型，并分析数据业务的时延性能，归纳出基于网络演算理论的 QoS 通用分析方法，探究影响多业务信道系统性能的主要因素。

2. 基于能量收集的通信系统的 QoS 和吞吐率的研究；在传输能量以及能量存储装置为有限的前提下，综合考虑能量收集过程、消耗过程、数据业务的到达过程和系统服务过程的随机特性，分析系统的能量中断概率和数据业务的排队时延特性，并以这两个参数为约束条件，研究系统的能量收集速率与其吞吐率之间的关系，为网络的流量控制和系统配置提供理论指导。

3. 认知无线电通信系统的服务特性和 QoS 特性的研究；对用户感知错误的过程进行建模，结合主用户和次用户不同的优先级，分别构建主用户和次用户所能享有的系统服务模型，分析主用户和次用户业务的 QoS，并分析满足次用户业务 QoS 需求时所需要的最小能耗。

4. 基于网络演算的模型以及分析方法的匹配验证：以多业务信道服务模型以及 QoS 分析方法为依据，结合现网实际控制参数，分析语音业务和数据业务的拥塞特性，并与实际现网数据进行对比，验证模型和分析方法的准确性。提出基于网络演算的系统容量配置算法。

5. 对典型无线通信新技术的研究与建模：紧跟无线通信网络的发展方向，对 LTE 网络的动态 TDD 技术、超密集网络中的小区动态开关技术和多点协作技术、LTE 在非授权频带的共存机制等技术进行了研究。这部分内容为网络演算理论与实际应用的结合提供了基础。

少模光纤复用传输模式损伤机理与补偿技术

研究单位：北京邮电大学信息光子学与光通信研究院
项目负责人：高冠军
项目组成员：高冠军，顾畹仪，韩佳巍，陈赛，张楷，许丞，刘俊彦，邓刘娇，张财星，李惠，王蕾，李静雯

结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302085）。在骨干网络带宽需求持续猛增，单模光纤传输潜力发掘殆尽，逼近非线性仙农极限的背景下，基于少模光纤的模分复用技术正成为后单模光纤时代超大容量，超长距离，高谱效传输最具潜力的实现方式之一，具有广阔的发展空间和应用前景。

该项目针对长距离少模光纤复用传输所面临的模式效应复杂，模式损伤严重，传输性能遭遇瓶颈的的根本问题，探索模式损伤作用机理与损伤补偿的关键技术。设计了适应当分复用传输的低耦合，低非线性少模光纤；建立非线性传输过程和模式损伤作用的理论模型；实现了包含模式群时延，模式相关增益/衰减，弱机制下的线性模式耦合，模内/模间非线性等损伤效应在内的模分复用系统仿真平台，支持对上述模式损伤的分离式/结合式仿真及基于单载波，多载波等调制和数字信号处理。在此基础上，发现了模式信号调制格式各异条件下的模式串扰新机理。设计了基于注水原理的模式功率控制，自适应模式调制，自适应模式损伤均衡，模分复用的空时/频编码和分集接收等模式损伤补偿算法，并提出了模分复用系统中基于 Stokes 空间的调制格式无关的解复用算法，并通过系统仿真和试验进行了验证。
基于联合潜在因子模型的跨领域信息推荐系统研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：高 升
项目组成员：高 升，徐蔚然，陈 光，李 岩，罗 浩，李俊岑，李善涛，陈 达，方 舟
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61300080）。

该项目充分推广了 Web 环境下跨领域信息推荐问题的研究；建立了跨领域信息推荐的实验数据集并在互联网上公开；建立了联合潜在因子理论模型和优化算法；实现了跨领域中基于聚类技术的用户兴趣模型；实现了跨领域中基于迁移学习的多源异构信息对象模型；实现了基于跨领域信息共性特征和个性特征的跨域信息推荐算法；实现了基于 Hadoop 平台的大规模数据处理演示平台。

该项目所开发的多个理论成果都在合作企业的相关产品中进行了产业化应用。比如跨领域互联网视频推荐系统已经列入了 Docomo 的相关产品开发计划中；该项目开发的跨语言信息推荐系统已经被某电商企业应用于实际产品部署中。

为了探索知识图谱在推荐系统中的应用，同时验证知识图谱构建和补全在实际应用中的有效性，该项目设计并实现了一个基于垂直领域知识图谱的景点推荐问答系统。该系统以网页的形式为用户提供服务，主要利用景点知识图谱对景点的客观属性进行筛选，结合从评论中提取的景点各方面（Aspect）打分对景点的主观评分进行排序，在分析用户以自然语言形式提出问题后，向用户推荐最符合其要求的景点。其中景点各方面（Aspect）打分指从用户评论中提取的景点在某个侧面的综合评价，例如景色、娱乐设施和性价比等。

物联网感知层入侵检测方法研究

研究单位：北京邮电大学网络空间安全学院
项目负责人：李 祺
项目组成员：李 祺，郭燕慧，赵 勃，李 钊，董 泓，董 航，李承泽，董 枫，杨梦婷，杨有秀，于长奇
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61302087）。

物联网对数据的安全性要求很高，尤其是在信息感知层，一旦网络遭到入侵，那么不仅会破坏物联网的感知数据的安全性，而且会危害到与之相连的信息传输层乃至信息处理层的数据的安全性，给整个物联网带来无法预知的损害。该项目针对物联网感知层大规模异质网元共存、节点资源受限、感知环境复杂多变等特点，提出了一套针对物联网感知层的入侵检测方法，具体包括：基于上下文感知的入侵行为自动定义方法，基于迁移学习的多视角网络行为建模方法，基于免疫遗传算法的入侵检测系统。在上述研究的基础上，还搭建了专用的实验测试平台，验证上述方法的正确性和可行性。主要研究成果如下：
1. 提出了基于上下文感知的入侵检测需求分析方法，将感知信息依赖环境的部分独立出来，实现业务数据逻辑与系统环境相分离，引入上下文感知的环境信息控制函数和反射机制，使异常检测需求能够适应动态环境的变化。在上下文建模过程中，采用了基于隐马尔科夫模型的建模方法，通过已有的感知信息，推理检测数据的变化情况，进而对入侵检测任务进行动态调整，提高入侵检测的可靠性和灵活性。

2. 提出了可叠加的网络感知数据失效评估理论模型，将物联网感知层划分为多个子网，并利用各个子网的失效数据信息建立了可叠加的感知网络可靠性模型，使用极大似然估计方法对模型的参数进行估计，提高了拟合效果。

3. 提出了基于迁移学习的网络行为模型，引入了具有学习迁移能力的 Boost 方法进行网络行为的实时学习，这种方法充分利用了历史样本，并结合少量的即时样本，采用机器学习的方法来自动地分析、挖掘上下文信息间的依赖或因果关系，达到模型在线更新的目的，满足物联网感知层异常检测的需求。

4. 提出了基于非齐次泊松过程的物联网感知层可靠性模型，利用非齐次泊松过程描述了可修复感知节点的失效过程，动态评估与预测感知系统的可靠性，为物联网感知层的可靠性评估与设计提供了理论基础。

5. 提出了基于轻量级免疫遗传算法的入侵检测系统设计方法，借鉴了免疫遗传的方法来进行轻量级的物联网感知层入侵检测方法的设计，建立了具有免疫特性物联网感知层入侵检测系统。

组织从偶发事件中学习机制的研究：
基于组织注意力的视角

研究单位：北京邮电大学
合作单位：首都经济贸易大学
项目负责人：赵晨（北京邮电大学）
项目组成员：赵晨，高中华
结题时间：2017年3月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：71302119）。

偶发事件是指发生概率较低且影响程度较大的不寻常事件。例如，铁路民航企业撞车或坠机等交通运输事故、工矿企业火灾或爆炸等安全生产事故、生产制造企业贸易纠纷或产品召回等运营危机均属于偶发事件范畴。虽然偶发事件不常发生，但是一旦发生则会对组织产生较大负面影响，因此组织从偶发事件中总结经验教训，对防止不利事件的再次发生具有重要意义。然而，已有的组织从偶发事件中学习研究更多关注单一偶发事件所触发的问题情境，很大程度上忽视了当前偶发事件与相关偶发事件的内在联系。由此导致，虽然组织每次事后均积极开展组织学习，但是类似事件一段时间之后又会发生。

该项目基于组织注意力的视角，创新性地提出组织从偶发事件中学习的内在机制模型。首先，组织当前发生的偶发事件通常被视为组织学习的契机，触发组织从当前偶发事件中学习的行为；其次，当前偶发事件与先前偶发事件可能存在某种内在联系，这些偶发事件的相互叠加能够营造组织所面临的问题情境，影响组织的注意力质量；最后，问题情境对组织注意力质量的影响可以从稳定性和发散性两方面来看待，以聚焦次数和聚焦时距为表现形式的注意力稳定性能够提高组织对偶发事件的认识深度，以内发散和外在发散为表现形式的注
意力发散性能够提高组织对偶发事件的认识广度，从而全面强化组织从偶发事件中学习成效。通过以20年间美国民用航空产业所经历的安全事故数据为样本的实证研究验证了上述作用机制。注意力稳定性的作用体现在：偶发事件之间重复发生的次数越多、相关偶发事件的时间间隔越大，则组织从偶发事件中学习成效越好；注意力发散性的作用体现在：一定时期内组织所在行业全部偶发事件原因的发散程度与组织从偶发事件中学习成效呈现U型关系，而本组织全部偶发事件原因的发散程度与组织从偶发事件中学习成效呈现倒U型关系。这些结论为组织从偶发事件中学习提供了有益启示。既然问题情境客观存在并且能够影响组织从偶发事件中学习成效，那么组织不仅要熟悉问题情境更要善于利用问题情境。组织一方面要将当前偶发事件作为学习与变革的契机，另一方面还要主动地发掘当前偶发事件与先前偶发事件或其他组织发生的偶发事件之间的内在联系，通过叙述、分类、编码和解析这四个组织从偶发事件中学习的关键步骤挖掘事件经验的丰富内涵来强化问题情境，在提高组织学习内在动机的同时扩展组织学习的经验来源，从而帮助组织冲破变革障碍，在组织战略和结构等方面做出重大调整。

上市公司股份回购的内在特质、经济后果与管理对策研究

研究单位：北京邮电大学

合作单位：首都经济贸易大学

项目负责人：何瑛（北京邮电大学）

项目组成员：何瑛，汪平，高锦萍，张宇扬，王增民，李娇，胡月，黄洁，孔静敏，袁筱月

结题时间：2017年3月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：71302124）。

在西方成熟的资本市场上，股份回购是一种常见且重要的公司金融行为，因此学者对股份回购的实证研究取得了比较丰硕的成果。而我国股份回购的发展是在2005年之后，随着股份回购在我国上市公司的逐步使用，作为一种重要的资本退出机制和价值分配方式，开始日益受到公司管理层的青睐、市场投资者的追捧及政府监管机构的重视，并在金融危机时被监管机构当作"救市"的利器。

该项目研究借助公司治理机制、市场效率等相关领域理论，对政府监管层、公司管理层和市场投资者正在关注并亟待回答的三个逻辑关系递进的核心问题进行研究，即究竟具有什么内在特质的上市公司通常会实施股份回购？上市公司实施股份回购通常会带来的经济后果？面对市场投资者对股份回购作出的市场反应管理者通常会采取的管理对策？该研究对上市公司股份回购的内在特质、经济后果与管理对策进行研究并建立系统的理论框架，采用 Logistic 模型、事件研究法、Tobit 回归模型等研究方法对三个核心问题进行实证研究和检验分析，得出了有参考和借鉴价值的研究结论，并基于此对中美上市公司股份回购实践进行比较研究。

随着越来越多的公司开始进行股份回购，投资者保护问题日益受到关注。董事会特征和股权结构作为重要的公司内部治理机制，对投资者保护起着至关重要的作用，因此该项目基于委托代理理论，以公司治理为研究视角，利用2005-2014年实施股份回购的A股上市公司数据，以董事会特征和股权结构衡量公司治理，并且纳入管理层权力为调节变量，探究公
司治理对股份回购的影响。另外，开始涉足行为金融领域，探讨投资者情绪对股份回购的影
响，此领域也是本人后续进行股份回购接续研究的切入点。

总之，该研究属于分配理论领域的基础研究，具有积极的学术研究意义及实践参考价值。其理论贡献在于：研究主题属于公司财务领域与时俱进的前沿课题，对我国上市公司股份回
购的内在特质、经济后果与管理回应进行实证研究和检验分析，分析结论在为相关利益者提
供理论框架和参考的同时，推进和完善了股份回购相关理论的发展。其应用价值在于：有利
于政府监管层、公司管理层和市场投资者全面了解、预测和规范上市公司的股份回购行为，
进一步完善股份回购相关法律法规建设，此外对于提高中国上市公司资本运作水平，更有效发
挥股份回购的作用，完善公司治理，均具有重要的现实意义。

基于传声器阵列与信息融合的铁路货车滚动轴承早期故障诊断方法

研究单位：北京邮电大学
合作单位：北京交通大学
项目负责人：陈斌（北京邮电大学）
项目组成员：陈斌，张仲义，高宝成，陈伟，刘雅雯，张斯捷，周媛，吴冬，刘谧，吴尚孺，付彧，尹苹
结题时间：2017年3月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：11304019）。
该项目针对铁路货车滚动轴承早期故障诊断问题，开展了全面深入研究，提出一套面向
移动、变转速等特殊场景的滚动轴承故障诊断方法。主要研究内容如下：
1. 在阵列传感器检测声信号重构方面：推导建立了适用于货车轴承故障在线检测的阵列
 传感器部署准则，提出一种基于 TDOA 和时域插值的多普勒效应矫正方法，建立一种基于
 互相关和能量加权的阵列检测声信号重构方法，给出一种基于粒子滤波和 MUSIC 算法的变
 转速声信号重构中故障源定位方法，系统解决高速移动下滚动轴承完整故障声信号的获取问
 题。
2. 在轴承微弱故障特征提取方面：提出一种基于时谱峭度和信息熵的共振频带自适应确
 定方法，在此基础上建立基于 EEMD 的转轴瞬时频率提取方法，提出基于短时傅里叶变
 换和 BP 神经网络的轴承转速估计方法以及基于 FastICA 和谱峰检测的频比分离方法，此
 外，探究一种基于三阶循环统计量的故障特征提取方法和基于多频率检测的随机共振微弱特
 征幅值估计方法，系统解决了变转速轴承微弱故障特征提取问题。
3. 在轴承故障状态与含杂质状态区分方面：给出基于 Pro/E 和 ADAMS 的货车滚动轴承
 刚柔耦合建模方法，仿真建立了不同故障类型以及杂质运动状态的轴承模型，对比分析其振
 动机理和声信号特性，提出一种基于时谱峭度和经验模式分解的杂质与故障状态区分方法，
 以及基于双脉冲检测的剥离故障识别方法。

该项目研究成果丰富和发展了轴承故障诊断理论，有助于推动该技术的实用化，具有重
要的理论意义和应用价值。
有关四阶 Monge-Ampere 型方程若干问题的研究

研究单位：北京邮电大学
合作单位：清华大学，北京师范大学
项目负责人：鞠红杰（北京邮电大学）
项目组成员：鞠红杰，鲁建，张伟
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：11301034）。
该项目主要研究与四阶 Monge-Ampere 方程有关的若干问题，主要研究成果如下：
1. 研究了四阶 Monge-Ampere 方程解的内部正则性问题，获得解的二阶导数的上下界估计，这是正则性估计最关键的一点。对于二维情形，在满足一定条件下，证明了上述方程的 Bernstein 性质。该项目还研究了线性化 Monge-Ampere 方程的估计，这对进行高阶 Monge-Ampere 方程的正则性估计提供极大帮助。
2. 研究了 Minkowski 空间中 Gauss 曲率流在外区域上平移解的存在性，证明了平移解存在的充分条件是存在下解。然后，研究了带外力项的平均曲率方程以及各向异性的平均曲率方程在无界区域上解的存在性。这些结果进一步完善了椭圆型偏微分方程解的存在性理论。
3. 对于椭圆方程组，研究了一类来自复合材料中的椭圆方程组在狭窄区域上解的梯度的一致有界性估计。
4. 从流的角度出发，获得了几类非线性流的长时间存在性及其分类：
 （1）研究了初始曲面一致凸的各向异性拟调和平均曲率流，得到流的长时间存在性及一致凸性；
 （2）研究了初始曲面为严格凸的带常外力场的全非线性逆曲率流，探讨了外力项对流的影响，并且证明了流的短时间存在性，并给出了曲率流在不同外力场下的完全分类；
 （3）研究了一类全非线性拟曲率流的非坍塌性。利用平均曲率流的内外非坍塌性可以得到曲率流位置的结果，并进而用简略的证明给出了平均曲率流奇点和存在时间等的刻画。

资源受限条件下多媒体感知数据的安全技术研究

研究单位：北京邮电大学
合作单位：北京电子科技学院
项目负责人：肖晨（北京邮电大学）
项目组成员：肖晨，王丽丰，李铁萌，胡延楠，邹方，倪连柱，殷实，朱梦娇，王钰洁，祝捷
结题时间：2017 年 3 月

该项目为国家自然科学基金资助青年科学基金项目（项目编号：61300182）。该项目针对电能及计算资源受限的物联网感知应用中实时多媒体数据量大、延迟敏感造成感知数据处理与安全受到威胁、亟需优化的问题展开深入研究，主要研究成果如下：
1. 研究了受限资源与海量数据安全处理的不对称性，指出电能、计算能力等资源与数据量存在不对称，且这种不对称未来发展趋势不收敛，为此提出了一种面向受限资源的定量分
析模型，以及一种基于效用价值的资源优化模型，为项目后面的安全优化研究提供理论和模型基础。

2. 提出了面向终端感知设备的轻量可分级多媒体数据加密方法。物联网终端设备的计算和能量资源最紧缺，项目提出的加密优化方案面向特定编码器，尽量选择少而重要的数据进行优先加密，在有限资源约束下保证对安全影响更大的数据优先受到保护。

3. 提出了编码无关的通用快速自适应多媒体数据加密方法，并研究了用于参数调整的实时调度算法，该套方案可以通过参数调节加密方法的数据吞吐量。通用算法解决了感知网络的中间层节点无法解码多媒体数据的问题，快速自适应能够适应中间节点上多路多媒体数据流带宽，波动剧烈的特点。

4. 针对系统中多路多媒体感知数据的整体安全性，提出了多路数据加密优化选择控制模型，并将资源优化策略引入物联网地面感知检测、物联网资源共享众包等领域进行了应用尝试。选择控制模型根据系统有限的资源对多路数据进行全局安全优化，为不同安全权重的数据选择不同的加密方案，使得系统整体安全性更优。

密集小蜂窝网络高能效及高谱效的关键技术研究

研究单位： 北京邮电大学

项目负责人： 毛国强（悉尼科技大学）

项目成员： 毛国强，陶小峰，张雪菲，Zihuai Lin，Peng Wang，王月，Youjia Chen，Jing Yue，Tian Ding，Ming Ding，张嘉真，徐珉

结题时间： 2017 年 3 月

该项目为国家自然科学基金资助海外及港澳学者合作研究基金项目（项目编号：61428102）。

随着新型网络的不断涌现和密集部署，如何构建通用的密集网络模型，推导其理论容量，为不同网络进行统一的理论指导，是未来移动通信网络亟待解决的问题之一。此外，在 5G 倡导绿色通信的大背景下，如何实现异构密集网络能效和谱效的最大化，也是一个重要且极具挑战性的问题。

该项目从理论上对随机几何和图论进行了发展和创新，建立通用的异构密集网络模型，推导其容量；进一步，从网络编码、小区关联、资源管理等角度对异构密集网络架构下的能效/谱效问题开展研究。主要研究内容如下：

1. 通用的异构密集网络模型与性能分析：
 (1) 针对通用的异构密集网络场景，提出小区位置不规则部的复杂网络分析模型，并推导了其容量。该模型与泊松点过程相比，更具有普适性和合理性；
 (2) 针对移动节点辅助（如车载和蜂窝协作通信）的网络场景，构建了车-车通信和车-基站通信的混合密集网络模型，推导基站协作概率、小区切换率和切换开销，并得到最小化切换开销下的最优车载通信半径；
 (3) 针对多跳异构密集网络场景，提出基于随机传输半径的多跳传输模型，推导了其成功传输概率，并利用最优化理论分析得到最小传输开销下的最优转发函数。

2. 异构密集网络的能效和谱效分析：
 (1) 针对异构密集网络中干扰严重的问题，提出了一种基于网络编码复用的传输方案；进一步为解决多用户流业务的竞争问题，提出基于反馈的恢复协议来降低网络冲突概率，仿
真表明所提出的恢复协议与 VACCINE 协议相比网络时延降低了 26%，资源占用率降低了 25%；
（2）针对实际异构密集网络站点和用户分布相关性强的问题，在 backhaul 时延受限的条件下，通过设计最优的联合接入与缓存策略实现最小化用户时延。仿真表明所提出的策略与传统 MPC-MS 方案相比时延减小 22%；
（3）针对不同网络/业务的用户优先级不同的问题，利用因子图模型设计分布式置信信息传播算法，得到了异构密集网络中的用户体验和负载均衡最优的网络频谱资源调度。

高密度低时延机器通信无线网络新理论和方法研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：张奇勋
项目组成员：张奇勋，高晖，张轶凡，冀磊，冯泽冰，张月，傅彬，陈文萍，赵思雯，杨拓，王勤龙，张鹏毅
结题时间：2017 年 3 月

该项目为国家自然科学基金资助应急管理项目（项目编号：61540021）。
该项目主要研究内容如下：
1. 针对层叠异构网络场景研究高密度通信网络的容量理论并提出频谱利用效率评价指标，提出了异构网络的多流传输方法。
2. 针对高密度机器通信网络中干扰加剧难题，提出时频空多维度干扰协调与干扰管理新方法，提出基于公平性的非授权频谱接入方式、授权和非授权载波波聚合的资源调度新方法与技术。
3. 针对无人机编队典型场景，提出了基于定向天线的新型邻居节点发现方法与技术，提出了动态域下无人机覆盖优化方法和路由选取技术。

随机排队网络的动态控制

研究单位：北京邮电大学
合作单位：北京工业大学
项目负责人：杨建奎（北京邮电大学）
项目组成员：杨建奎，郭永江，李晓花，禹海波
结题时间：2017 年 3 月

该项目为国家自然科学基金资助应急管理项目（项目编号：11541006）。
该项目研究随机排队网络的动态控制，主要研究成果如下：
1. 对通信系统中不稳定数据流量阶段性规律的 On-off 排队模型考虑收敛速度与强逼近。具体来说，建立了由转换更新过程驱动的顾客到达过程的弱收敛定理，以及整个排队系统的强逼近定理。
2. 对于库存管理(现金流管理)中的布朗运动需求模型，费用函数不再局限于凹/凸函数，考察当费用函数为更一般函数情况下的最优控制问题。建立了带有下界反射的连续时间最优控制策略。最优的下界可以由一个特定的方程求解得到。
3. 对于医疗管理问题中匹配排队问题，考察最优渐进控制。对于多重任意匹配模式，证明了扩散逼近极限定理，观察到状态崩塌，并将问题转化为（成果2）中建立的布朗控制问题，建立渐进最优库存管理策略。其中，与以往扩散逼近研究不同的是，状态崩塌后的反射布朗运动（影子系统）并不是实际的队长过程。通过一个确定优化问题将布朗运动还原成实际队长过程。

4. 对于具有一般分块结构转移矩阵的离散或连续时间可数马尔可夫链，建立概率分布性质、状态函数期望的单调性、凸性与可比较的等函数性质。目前这些结果可以应用到GI/Geo/1, GI/M/1, M/G/1, PH/M/c 以及拟生灭过程 (QBD) 等对应的离散和连续时间马氏链的研究。尤其是 PH/M/c 模型还可以对相位性质进行讨论。

半导体纳米线异质结构：理论与实验研究

研究单位：北京邮电大学信息光子学与光通信研究院
项目负责人：张霞
项目成员：张霞，颜鑫，王琦，刘凯，任晓敏，魏巍，李军帅，李邦，吴瑶
结题时间：2017年3月

该项目为国家自然科学基金资助国际（地区）合作与交流项目（项目编号：61511130045）。

该项目在纳米线异质结构的理论和实验方面开展了合作研究并取得了丰硕成果，推动了纳米异质结构的发展。主要学术交流活动包括：2015年4月13日至4月26日，项目俄方负责人、俄罗斯圣彼得堡科学院大学理论物理系主任 Vladimir G. Dubrovskii 教授，俄罗斯圣彼得堡科学院大学副校长 Alexey E. Zhukov 院士，俄罗斯科学院约飞物理技术研究所副所长 Victor M. Ustinov 院士访问该研究组，分别作了题为“Recent advances in crystal phase design in Au-catalyzed III-V nanowires”、“Asymmetric barriers and their application in diode lasers”和 “Chip-to-chip free space optical interconnects based on vertical cavity surface emitting lasers”的学术报告，并与项目组成员进行了座谈，就项目合作研究事宜进行了深入交流。2016年6月26日至7月1日，项目组成员颜鑫老师、博士生李邦赴俄罗斯圣彼得堡参加由项目合作方俄罗斯圣彼得堡科学院大学主办的第24届“纳米结构：物理与技术”国际研讨会。项目组成员展示了题为“Growth of core-shell pn junction GaAs nanowire arrays for photovoltaic applications”和“Self-induced growth of vertical free-standing InAs nanowires on InP substrate”的报告，并与与会学者进行了深入交流。

该项目主要研究进展包括：理论研究了纳米线径向多层异质结构的临近尺寸；在InP衬底上制备出垂直InAs纳米线，并研究了温度对纳米线形貌的影响；制备出InP/InAs纳米线/量子点II类异质结构、GaAs纳米线侧壁多层InAs量子点、GaAs/InP核壳纳米线侧壁分立InAs量子点等新型异维结构。
基于非高斯概率模型的跨域视觉分析

研究单位：北京邮电大学信息与通信工程学院
项目负责人：马占宇
项目组成员：马占宇，张洪刚，徐雅静，李春光，司中威
结题时间：2017年3月

该项目为国家自然科学基金资助国际（地区）合作与交流项目（项目编号：61511130081）。目前的多视角深度图像增强技术存在着时间空间的跨模态不一致等问题。该项目基于中方研究人员所提出的非高斯概率模型的体系框架以及英方研究人员所提出的跨域适应的概念，提出了基于非高斯概率模型的跨域视觉分析这一研究课题，主要研究内容如下：

1. 采用非高斯概率模型描述跨模态视觉特征的映射关系，给出模型参数估计可通过解析表达式描述的算法。
2. 基于反变分贝叶斯原理进行非监督楼适应方法的多模态视觉特征分析和融合策略研究。
3. 研究针对跨域视觉融合分析的非高斯概率图模型。

在为期两年的合作交流中，中方北京邮电大学研究人员与英方玛丽女王学院研究人员针对跨域视觉分析这一前沿课题开展了系列研究，主要研究成果如下：

1. 提出了实例层次的细粒度跨模态检索问框架，在跨域检索的问题上取得了较好的效果。
2. 将跨域思想应用于手绘草图与图像的互检索上，验证所提出方法的泛化效果。
3. 验证并总结了图像和文本间的跨模态方法及规律。

基于微波光子技术的稀疏信息实时获取

项目承担单位：清华大学
项目合作单位：北京邮电大学，康考迪亚大学，渥太华大学
项目负责人：谢世钟（清华大学）
北邮项目负责人：徐坤
北邮项目组成员：徐坤，戴一堂，尹飞飞
结题时间：2017年3月

该项目为国家自然科学基金资助重大国际（地区）合作研究项目（项目编号：61120106001）。微波光子技术融合了微波和光子两大技术的优势来实现信号的产生、高速处理和传输，并能够完成普通信号处理系统中复杂甚至是无法完成的高速宽带信号处理及分析功能。该项目将微波光子技术引入到稀疏信号大动态范围高效信息化接收领域当中，实现频域和时域的稀疏信息的接收与获取。高频光载波用于承载被测信号，并且通过光学的预处理和后处理单元获得信号有效信息的提取与控制，再使用光电线性转换单元和数字信号分析技术获得有效信息的接收和获取。通过引入微波光子技术可以大大克服多种电子瓶颈限制，得到传统方法无法实现的稀疏信息获取。实现高速宽带微波信号测量、高速激光扫描成像等功能，在民用和军用领域具有广阔的应用前景。主要研究成果如下：
1. 针对如何实现多频率、多频段宽带微波信号的频谱感知与分析处理的挑战，实现了宽带微波的瞬时单频点测量、相干信道化多频点测量以及基于光子压缩采样的瞬时多频点频谱感知与分析，将多频点测量精度从 GHz 提高到百 kHz。

2. 融合压缩采样和微波光子信号处理技术首次实现超宽带微波信号在多载波条件下的精确频率定位。该成果采用单信道低速 ADC，可极大降低后续数字信号处理的难度和功耗。实验中利用微波信号在频谱上高度稀疏特性，通过低速 ADC（～100MHz）实现了宽带微波频率范围（如高达 60GHz 载波内的任意 5GHz 带宽）的多频测量，精度达到 2kHz。

3. 在时域稀疏信号获取方面，进行了超高速成像的研究，设计并实现了具有波分/偏振复用功能的时域拉伸成像技术，将传统成像的速度提升了 4 个数量级，达到了 20 亿帧/秒，时间分辨率为 500ps。可以用于高通量流式细胞成像检测及超高速平面筛查等领域。

4. 为解决超高速成像当中的海量数据问题，在国际上首次提出了时域拉伸压缩采集样像素成像技术，通过色散傅里叶变换调制把单像素成像当中的随机矩阵测量过程从 kHz 提升至 MHz 量级，实现了数据压缩比最大达到 10%，并应用于流式细胞成像当中。

5G 无线网络架构与智能管控技术研究

承担单位：北京邮电大学
合作单位：中国电信股份有限公司
课题负责人：温向明
课题组成员：温向明，路兆铭，王鲁晗，管婉青，马璐，雷涛，陈昕，
 廖青，郑伟，赵振民，冯志勇，吕铁军，张奇勋，高晖，
 张铁凡，赵星，张彪，夏修妍，徐恒，任远，谭方青，
 张春平，仇琛，陈文萍，傅彬，谭方青，张月，
 袁昕，周剑，赵小彤
结题时间：2017年3月

该课题为北京市科技计划项目“第五代移动通信系统（5G）无线传输与网络关键技术研究”项目中的课题（课题编号：D15110000115002）。

该课题分别从架构设计、态势感知及网络智能管控方面研究未来 5G 网络架构及其管控技术，提升 5G 中异构网络间的协作性及异构组网效率，降低 5G 网络中业务响应时延和信令开销，实现高效、融合、协作的 5G 网络管理。

在架构设计方面：分别研究了 5G 无线网络中控制与数据分离的架构设计、混合集中分布的联邦管控方法、异构无线资源虚拟化技术和 QoE 驱动的虚拟化资源管理技术。软件定义的网络架构为智能管控技术提供了基础架构支撑，网络态势感知是进行网络智能管控的关键依据，分别从网络行为态感知、虚拟资源特征感知、业务需求 QoE 感知等方面综合对网络态势进行感知和预测。基于架构设计和态势感知：分别从智能移动性管理和智能无线资源管理方面研究了 5G 智能管控技术，主要包括异构无缝切换技术、切换流程信令简化、基站群落划分方法、以及虚拟资源迁移、混频部署优化、资源管理优化等关键技术。通过该课题的研究与实施，课题成果将有效应对未来 5G 网络增强型移动宽带、低时延高可靠和大规模接入等应用场景。

基于该课题的理论研究，设计实现了 5G 无线接入网络架构验证平台和 5G 高密度无线网络智能管控试验系统，对网络架构和智能管控等各项关键技术功能指标和性能指标进行了验证。
研制成功基于 SDN 的 5G 无线接入网络架构验证平台。该平台支持蜂窝和 WLAN 之间的无缝切换，实现了无线接入网融合。测试结果表明该平台可以有效降低异构无线网络切换时延，异构无线网络异构组网效率与目前 3GPP 规范相比，相比 LTE 组网效率提升 24.12%，相比 WiFi 提升 25.72%。研制成功 5G 高密度无线网络智能管控试验系统，实现了高密度无线网络智能管控。测试结果表明 5G 无线网络控制信令开销较 4G LTE 系统降低 29.8%，从蜂窝向 WiFi 切换业务切换时延降低 96.91%，从 WiFi 向蜂窝切换业务切换时延降低 88.37%。

北京邮电大学《信息通信动态新技术科普展厅》

水下激光通信等新型互动展品研制

研究单位：北京邮电大学 数字媒体与设计艺术学院
项目负责人：高 立
项目组成员：高 立，兰名荣，刘 雯，王子豪，胡启航，傅晓彤，肖常兵，
王 飞，张立兵，任旭鹏，王首尧
结题时间：2017 年 8 月

该项目为北京市科技计划项目（项目编号：Z161100003216211）。北京邮电大学《信息通信动态新技术科普展厅》水下激光通信等新型互动展品研制项目，位于北京市海淀区西土城路 10 号，北京邮电大学东门内 200 米处北邮新科研大楼一层西侧。展厅基本建设及公共配套设施齐备，交通便利。

该项目对展厅进行内容提升设计，新增激光穿梭互动二维码、水下激光通信、360 度无缝融合、新型抗弯曲性能光纤、多重传感器检测及定位求助、智慧城市——智慧光缆交接箱等 6 件大型互动展品，以互动参与为主，并能激发受众动脑思考，强化对学科学的兴趣。利用多种现代展示技术及创意设计手法，使展示呈现方式多样化且丰富多彩。强调使受众能在环境中感知、体验并可获取相关的信息和知识。新增展项内容具备行业专业性、先进性、互动性和示范性，使得展厅内容更全面、更形象、更生动。

展示主题：
通信科普知识、物联网体验、感知应用、未来网络、信息基础知识、未来展望。
参观者通过各展项的体验及交互式操作，完成通信、信息新技术、物联网及相关新技术的操作及体验。通过此永久或半永久及临时性的技术展示，做到新技术滚动展示，代表我国信息通信最新技术发展进程的对外展示窗口。

该项目充分发挥了北京邮电大学为我国通信信息类专业高等院校的优势，专业性强，具备其知识的权威性。展厅的建设及开放将积极参与我市科普工作，推动北京科普事业健康、可持续、多元化发展。

2016 年，北京邮电大学《信息通信动态新技术科普展厅》被评为优秀全国科普教育基地。
面向大规模融合网络的行为机制建模和推演

研究单位：北京邮电大学信息与通信工程学院
项目负责人：顾仁涛
项目组成员：顾仁涛，张佳玮，纪越峰，李慧，孙咏梅，武晓宇，李丽君，魏培，岑翼，刘智辉，王肖雄，刘新军，臧俊捷，郭通禄，葛钊志，张一帆，郑豪豪

结题时间：2017 年 3 月

该项目为北京市自然科学基金资助面上项目（项目编号：4142036）。该项目研究目标以网络中数据流为基本研究对象，依靠弹性力学和复杂网络相关理论为主要数学工具，重点研究了数据流服务质量之间复杂耦合现象产生的原因、作用机制和传播特性，开发设计了仿真与实验平台，并在相关行业开展了应用研究。主要研究成果如下：

1. 利用通信网络系统与弹性物理系统的映射关系，建立了业务数据流服务质量耦合模型，发现网络数据流的耦合关联具有小世界特性。
2. 建立了基于数据流竞争耦合作用的分层传播模型，获得了数据流竞争耦合影响的全网传播机理和波动性规律。
3. 提出了基于社团的突发数据流波动影响控制策略，有效针对网络突发事件进行快速可靠的防御，及时恢复网络稳定，提高业务服务质量。
4. 针对电力通信以及电信网络等场景开展了应用研究，在电网安全脆弱性方面分析电力分组传送网（PTN）业务间的风险关联特性及应对措施，在业务传输安全性与网络生存性方面提出了基于重要节点差异化保护的双层耦合网络防护方法，在固接入侧和移动前传/回传网络场景提出了减轻数据流拥堵强度、增强大区化效应进而缓解网络拥塞的接入网侧流量疏导与资源调度机制。

该项目为深层次挖掘网络服务质量内在耦合机理以及传播规律奠定基础，并对高效准确的大规模网络管理和资源调配产生指导作用。

未来无线宽带互联网的智慧与公平传输机理研究

研究单位：北京邮电大学网络技术研究院
项目负责人：许长桥
项目组成员：许长桥，Gabriel-Miro Muntean，姜晓敏，关建峰，贾世杰，朱军龙，杨树杰，黎卓锋，王目，唐曼

结题时间：2017 年 3 月

该项目为北京市自然科学基金资助面上项目（项目编号：4142037）。该项目针对面向未来无线宽带互联网的智慧与公平传输机理，对多接口传输下的多维度路径质量、数据适配机制、可重配置的数据分配、网络资源调度、传输编码等方面进行了深入探讨，主要从网络环境认知的路径质量度量模型，均衡传输的数据适配机制，公平传输的网络资源调度策略以及适应网络复杂性的传输编码策略等四方面开展理论研究与设计，并且研制了面向未来无线宽带互联网融合各层协议栈的跨层传输仿真平台，为评价所设计算法的
性能以及验证理论研究的正确性提供了实际数据支持，也为理论、协议和算法设计的进一步改进给出了依据。主要研究成果如下：
1. 面向复杂异构移动网络环境的移动模型构建。
2. 面向节点协作的通信质量评估模型。
3. 面向跨层感知的路径质量评估模型设计。
4. 基于未来网络架构的传输质量评估模型构建。
5. 基于多维情境感知的异构网络并行数据调度机制。
6. 面向能耗最小化的信息中心网络架构多路径数据调度机制。
7. 以接收端为驱动的多路径数据调度机制。
8. 基于跨层感知的公开性传输。
9. 面向 TCP 友好的多路传输协议设计。
10. 基于流模型的公开性研究。
11. 面向网络编码的多路径传输优化。
12. 基于管道化编码的并行传输机制。

GaAs 纳米线-In(Ga)As 量子点复合径向 pin 结阵列的制备及其光电特性研究

研究单位：北京邮电大学信息光子学与光通信研究院
项目负责人：张霞
项目组成员：张霞，颜鑫，张锦南，刘凯，任晓敏，蔡世伟，李军帅，吴瑶，厉彦宏，王思佳
结题时间：2017 年 3 月

该项目为北京市自然科学基金资助面上项目（项目编号：4142038）。
该项目围绕 GaAs 纳米线 pin 结阵列及其光电特性开展了系统的理论和实验研究工作，在新型纳米线阵列太阳能电池的设计仿造、纳米线侧壁量子点的制备、GaAs 纳米线阵列太阳能电池及光探测器件的研制方面取得了重要进展。主要研究成果如下：
1. 设计仿造了多节纳米线阵列太阳能电池、表面等离激元增强型 GaAs 纳米线阵列太阳能电池、倾斜纳米线阵列太阳能电池、锥形纳米线阵列太阳能电池、钙钛矿/GaAs 纳米线阵列复合太阳能电池等多种新型太阳能电池器件，实现了不同程度转换效率的提升。
2. 制备出 GaAs 纳米线基多层 InAs 量子点、GaAs/InP 纳米线基 InAs 量子点等异维复合结构，为纳米线基间带太阳能电池的研制奠定了基础。
3. 制备出 GaAs 纳米线轴向、径向 pn 结阵列二极管，器件的 I-V 曲线均表现出明显的二极管整流特性，在 GaAs 纳米线径向 pn 结二极管的基础上研制出太阳能电池原型器件，在 AM1.5 太阳光下器件的开路电压、短路电流、填充因子和转换效率分别为 0.17 V，21.7 mA/cm²，0.32 和 1.2%。
4. 制备出基于石墨烯/GaAs 纳米线阵列复合结构的光伏型探测器件，在 2 mW 的 532 nm 激光功率下，器件开路电压为 0.43 V，短路电流为 3.16 μA，器件在零偏压下的光响应度为 1.54 mA/W，室温响应/恢复时间为 71/194 μs。

上述成果对低维半导体光电子器件的研制具有重要意义。
基于多粒子纠缠态安全性检测的量子超密编码协议设计与分析

研究单位：北京邮电大学
合作单位：北京工业大学
项目负责人：李剑
项目组成员：李剑，周艺华，周延泉，郑岩，李睿凡，李慧娟，李娜
结题时间：2017年10月

该项目为北京市自然科学基金资助面上项目（项目编号：4152038）。

由于量子超密编码通信中存在各种如窃听、拒绝服务攻击、中间人攻击等攻击行为，造成机密信息被窃听或不能准确地传给接收方，从而对通信进行破坏。尤其是通过“纠缠”等方法对机密信息的窃听。因此设计出高安全性的量子超密编码协议，并对协议进行安全性分析和证明具有重要的意义。该项目设计出了高安全性的量子超密编码协议，针对如何保证协议通信的安全问题，提出在通信的粒子流中随机加入多粒子纠缠态的检测方法，保证通信的安全；针对如何证明该协议所提出方法检测效率高的问题，采用冯.诺依曼熵计算出窃听者得到的信息量，对比不同协议中窃听者得到相同信息量的条件下被检测到的概率大小，证明该协议所提出方法具有较高的检测效率；针对如何证明该协议所提出协议自身是否安全问题，采用概率论和极限求和的方法，证明协议自身具有较高的安全性。

该项目的研究成果对量子通信相关技术的发展有望产生重要影响：
1. 安全性分析是量子超密编码通信过程中的关键一步，在理论上提高安全性分析的效率能更好地保证量子超密编码通信的安全，使其逐步向实验和应用阶段迈进。
2. 鉴于量子超密编码对量子通信领域发展的推动作用，通过对某些协议的进一步分析和改进，能进一步促进量子超密编码领域的发展，激发广大研究者对该领域的研究热情，从而更有力地推动量子超密编码技术的发展。
3. 量子通信网络的研究离不开量子通信技术的支撑，量子通信的安全性直接关系到量子通讯网络的安全，因此，提升量子通信协议的安全性检测效率，能够极大地推动量子通信网络的研究，并促使其早日进入实验和实用化研究阶段。

基于 \(\alpha \)-Ga\(_2\)O\(_3\) 外延薄膜的日盲紫外光电器件研究

研究单位：北京邮电大学理学院
项目负责人：吴真平
项目组成员：吴真平，安跃华，郭道友，孙昌龙，褚旭龙，郭训才
结题时间：2017年3月

该项目为北京市自然科学基金资助青年项目（项目编号：2154055）。

该项目围绕 \(\alpha \)-Ga\(_2\)O\(_3\) 外延薄膜展开的，主要研究成果如下：
1. 通过采用 L-MBE 方法摸索了在 m 面 \(\alpha \)-Al\(_2\)O\(_3\) 衬底上生长 \(\alpha \)-Ga\(_2\)O\(_3\) 薄膜，研究了不同温度、氧压、激光能量、脉冲频率等对 \(\alpha \)-Ga\(_2\)O\(_3\) 外延薄膜生长的影响。在得到高质量 \(\alpha \)-Ga\(_2\)O\(_3\)
薄膜后，通过沉积 Au/Ti 叉指电极，制备了性能优异金属-半导体-金属 (MSM) 结构日盲深紫外光电探测器件原型。

2. 在获得金属-半导体-金属 (MSM) 结构日盲深紫外光电探测器件原型后，尝试通过金属元素掺杂来提升紫外光电探测性能。通过金属元素 Sn 掺杂，成功对 α- Ga2O3 薄膜的载流子浓度进行了调节，并获得了光电暗比 I254/Idark 超过 1.4 × 10^2，光电响应度高达 9.55 × 10^1 A/W 的日盲深紫外光电探测器件。

3. 进一步的研究了生长过程中氧气氛对薄膜质量的影响。通过改变沉积压强，可以在大范围内改变掺 Sn: α- Ga2O3 薄膜的导电性能，发现这是因为 Sn2+ 和 Sn4+ 两种价态离子在能带中的自补偿机制引起的。在此基础上，获得了暗电流更低，光电响应速度更快的日盲深紫外光电探测器件。

3. 开放式数据共享平台的研究：构建基于“车载感知网格”技术的综合数据共享平台，为多方位采集、多角度汇聚的城市感知信息提供开放式的共享平台，促进感知信息多渠道的共享。信息的共享，在宏观上可为北京市政府各级部门政策规划、市政建设、突发事件处理提供信息服务，促进北京城市建设健康、和谐、有序发展，提升城市管理水平；微观上，可为城市居民出行提供便捷的信息服务，减少交通拥堵，改善出行环境，促进绿色北京、低碳北京的建设。

该项目搭建了基于车载感知网格建设前端感知数据汇聚演示平台和基于车载感知网格建设后台数据共享管理演示平台，构建了基于“车载感知网格”技术的综合数据共享平台，实现了城市感知信息的多方位采集与多角度汇聚，从而将多种感知信息集中于一个“网格”，解决了为不同的信息需求方提供数据共享服务问题，项目成果有利于推进北京全方位、全天候共享信息的覆盖，以及推进城市和交通信息化、智能化及一体化的发展。

养老康复辅具科普展厅建设

承担单位：国家康复辅具研究中心，北京邮电大学
项目负责人：樊瑜波（国家康复辅具研究中心）
北邮项目负责人：汪晓春
北邮项目组成员：汪晓春，曹璐，由振伟，欧亚菲，王湘铭，廖俊森，李旭林，陈小鸥，康伟华，焉琛，任帅，朱茂林，曹正凯，董奕初，周思源，王飞

结题时间：2017年8月

该项目为北京市科技计划专项“养老康复辅具科普展厅建设”项目（项目编号：Z161100003216112）。

“北京养老康复辅具展厅”以服务设计为理论基础，将服务设计理念融入于展示空间设计当中，将展示厅作为一个参观流程的闭环，根据用户参观前、参观中、参观后的流程作为一个整体，绘制系统的服务蓝图。通过服务蓝图，引导整体展厅的空间及样式设计。

养老康复辅具展厅整体基于服务设计理念，结合了公众对康复辅具的需求的求知特点，采用图文、多媒体和实物展示三种主要科普形式，为公众提供一个普及康复辅具基本知识，体验科技带给养老带来全新概念，形成一个具有鲜明特点，可与参观者互动的科技养老示范模式。

规划设计原则有以下几点：
1. 主题明确，特色鲜明，有强烈艺术感染力。
2. 总体装修设计风格简洁：具有动感：创造亮点。
3. 布展方式多样化，新颖别致，设计与展示重点突出。
4. 追求时代性与文化性的统一，融合高科技、智能化、生态化。
5. 结合展览内容布局互动项目，增加观众参与性。
6. 社会经济效益兼顾，采用限额设计。
7. 考虑各展区之间的相互关系，形成科学合理的参观路线。
8. 考虑无障碍通道及人流组织，满足公共建筑规范要求。

设计的展厅区域分为四个主要类型区：
1. 回顾历史区，以图文为主，展示包括中国养老的发展历史情况，以及康复辅具发展的历史进程。并展示展馆珍藏的部分历史文物遗迹等。
2.立足今天区，以图文及多媒体视频展示为主，为大众科普当今养老辅具的分类，并配以图片、视频等展示方式更加直观的为参观者科普养老辅具知识。

3.展望未来区域，以图文、及可交互多媒体展示为主，主要体现展示内容的科技感，普及更加先进的养老知识。

4.辅具体验区，包括智能家居，电动轮椅，翻身床，床椅转移辅具，助行器，一些有创意的、帮助老年人健康和便捷生活的一些小辅具。

最终呈现给参观者一个完整的体验效果，以帮助大家更系统全面的了解养老康复辅具的功能用途，进行大众性科普展示。

基于大数据分析的LTE无线网络自动优化

研究单位：北京邮电大学信息与通信工程学院
项目负责人：高伟东
项目组成员：高伟东，啜钢，刘俊，郭孟里，赵钊，陶蕊，严晗，任一方，郭帅，张家望
结题时间：2017年9月

该项目为北京科技成果转化种子扶持项目。

该项目主要内容如下：

1. 基于大数据分析的LTE网络自动优化平台：通过种子扶持项的支持，实现了基于大数据分析的LTE网络自动优化平台的设计搭建。通过运营商直接提供的信令，网管和业务数据，对选定的地理区域无线网络覆盖情况进行分析；平台支持可视化显示单基站网络覆盖和全局网络覆盖情况，展示网络问题区域；平台采用群智能优化算法对选定的地理区域进行网络优化，给出科学可行的优化调整方案，切实提高网络覆盖性能，全面指导运营商的LTE优化工作。该项目基于大数据分析的LTE网络优化方法，相比于传统路测网络优化，能够提供更加准确的结果，同时能够大幅减少网络优化成本，具有较高的成果转化价值。

2. 利用移动通信运营商现网中的测量上报（MR）数据，信令数据和网管数据等进行分析，分析结果更加真实可信，具有实际应用价值。在项目执行期内，与河北移动保定分公司网络优化部门合作，获取了河北省保定市徐水区的MR数据，工参数据，网管数据，邻区数据和地图信息等数据，开展大数据分析，为网络优化方案验证提供了支撑；

3. 提出了基于MR条数和RSRP结合的确定栅格主服务小区的算法，并基于实测数据进行了算法性能实测验证；

4. 平台能够提供准确的网络覆盖分析和问题区域定位。对于TDD系统，采用TDOA+TOA定位算法，获得每条MR所对应的栅格；针对FDD系统没有TOA参数的情况，采用基于三角定位和基于用户面数据的算法，平台对于实际网络覆盖参数的计算和问题区域的定位更加准确。定位算法的性能通过了第三方网优公司技术人员的测试，结果也得到了河北移动路测验证和肯定；

5. 为了更好的指导运营商的网优工作，设计了单基站覆盖区域显示功能。平台基于大数据分析，增加了单基站覆盖显示功能并基于实测数据测试验证；
（6）提出群智能无线网络优化算法，针对问题区域输出科学可行的网络优化方案；
（7）完成了对平台网络覆盖评估准确性和网络优化性能的现网验证工作。
2. 优化软件试点情况：通过种子扶持项目的支持，基于大数据分析的的 LTE 网络自动
优化平台在河北省保定市徐水区进行了试点，所使用的 MR 数据，信令数据和网管数据均
由河北省移动运营商提供。分别对基于大数据分析的的 LTE 网络自动优化平台的网络覆盖
分析准确性和网络优化性能进行了试点验证。试点结果表明，平台能够准确评估实际的网络
覆盖情况，输出的优化方案能够切实改善覆盖性能，其中平台分析主服务基站匹配准确率达
到 82.61%，平台与实测 RSRP 小于 10dB 的准确率为 86.36%，网络优化之后 RSRP 指标均
值提高了 4.21dBm，SINR 指标均值提高了 2.59dB，证明在一定程度上能够满足现网优化的
需要。

LTE-A 空口测试分析设备研发及产业化

研究单位：北京邮电大学信息与通信工程学院
项目负责人：赵成林
项目组成员：赵成林，李斌，许方敏，刘晓凯，王鹏彪，林学彬，仇超，
曹斌，张俊东，李春跃
结题时间：2016 年 12 月

该项目为北京市教育委员会科学研究与研究生培养共建项目。
该项目研发了 LTE-A 空口测试分析设备的系统架构，重点开发了 LTE-A 空口测试分析
设备的协议解析功能和物理层关键算法，与合作单位共同完成了支持 LTE-A 空口测试分析
功能样机的样机。主要研究内容及成果如下：
1. 完成除 PHY 以外高层协议的解析和处理，其中包括 MAC、RLC、PDCH、RRC、NAS、
IP 层的用户面及控制面的解析，支持特征包查找功能、数据包及协议的显示和捕捉过滤；
根据测试与分析设备设计的整体要求，建立了协议栈和协议指令测试集。
2. 研究设计了系统的信道估计，均衡，物理层测量，信号检测和参数估计等相关算法，
并对上述算法进行了优化。
3. 基于合作企业的硬件平台，实现了协议解析和相关软件的编程；经过系统测试，优化
了协议栈和协议指令集。

宽带光频压缩及其在精细光谱分析中的应用研究

研究单位：北京邮电大学信息光子学与光通信研究院
项目负责人：戴一堂
项目组成员：戴一堂，尹飞飞，徐坤
结题时间：2017 年 4 月

该项目为教育部“新世纪优秀人才支持计划”项目（批准号：NCET-13-0682）。该项目
执行期间，负责人授课研究生课程“非线性光纤光学”共计 108 课时，授课本科生课程“光
波导原理”共计 72 课时，教学效果良好、受学生好评。指导研究生毕业 4 名博士、9 名
硕士，在读 8 名博士、7 名硕士；其中一名硕士生获国际会议最佳学生论文奖，两
名博士生获国家奖学金，一名博士获得学校一等奖学金，一名硕士生获企业奖学金。新增主持科研项目4项，包括一项国家自然科学基金面上项目、两项装备预研教育部联合基金，一项国防973课题。申请国家发明专利9项。发表SCI检索论文17篇，包括8篇影响因子3以上，4篇影响因子2以上；国际会议报告3篇，国际会议邀请报告2次。一篇文章获第五届中国卫星导航学术年会“青年优秀论文奖”。负责人研究方向为微波光子技术在雷达/电子对抗射频前端的应用。多功能集成和软件定义是未来先进雷达/电子对抗的基本特征，要求其射频前端具有宽开且灵活可重构的时空频孔径；光载射频信号相对带宽窄、传输损耗低，具有天然的频域和空域的宽开能力，但由于射频和光频间的巨大差别导致精细处理的困难。负责人的研究目标即解决时空频孔径的宽开与精细化之间的矛盾。项目执行期间的代表性成果包括基于双光频率梳的宽带射频谱信道化数字接收技术，宽带光载多载波射频链路多源非线性数字共同补偿技术，基于“可调谐波长—色散”的长距离宽带双双向稳相链路技术等。上述技术在国际上获得较高的知名度，已被北京航天飞行控制中心所采纳，并被应用于其嫦娥三号卫星无线电测月系统和中心连线干涉测量系统中，在中电集团29所、38所，以及其他实验室等研究组中得到应用；研究有力的支撑了国内第一个微波光子雷达方向的国防973项目，并将于2017年底于中电集团38所内应用于其试验系统中。未来，负责人将抓住十三五国内对微波光子技术加大投入的契机，研究从单项技术到整体架构、从实验室演示到外场应用，在国内外产生重大学术影响。

融合经典保密通信的量子保密通信协议的研究

研究单位：北京邮电大学网络空间安全学院
项目负责人：陈秀波
项目组成员：陈秀波、徐刚、袁开国、窦钊、李婧、魏战红、李祯祯
结题时间：2017年4月

该项目为教育部“新世纪优秀人才培养计划”项目（批准号：NCET-13-0681）。

师德学风建设方面：“学高为师，德高为范”。在本科和研究生的教学工作中，努力使自己成为一名具有高尚师德修养的人民教师。自觉遵守教育法规法律，依法履行教师职责权利，以自身的思想、学识和言行教育学生，以自身道德的、人格的、形象的力量感染学生。“师者，所以传道受业解惑也”。作为人类灵魂的工程师，对待教学工作一丝不苟、精益求精；对待科研工作不畏艰难，勇于努力攻关本学科中的关键问题。

教学工作与人才培养方面：在项目期间指导了多名研究生和本科生的科研工作。2014年指导的5名本科生毕业设计中，其中一人获得《北京邮电大学校级优秀学士学位论文》奖。同时，在项目期间讲授了36学时的研究生课程《数论及其应用》。在该项目执行期间，共有6人次博士生和10人次本科生参加，并取得了良好的科研成果，指导的学生分别以第一作者身份在期刊上发表SCI检索论文7篇。

创新研究与社会服务方面：作为第一项目主持人承担了7项科研项目，包括：国家自然科学基金（面上）项目2项，霍英东教育基金会青年教师基金、“十二五”国家密码发展基金、中科院信息安全国家重点实验室开放课题2项，网络与交换技术国家重点实验室自主课题项目等。在国际著名SCI检索期刊上，如：《Information Sciences》、《Nature》的《Scientific Reports》、《Quantum Information Processing》等，发表论文23篇，其中第一作者3篇，通信作者12篇。科研成果得到国内外同行的关注和好评，SCI他引100余次。
科研工作规划：在完成新世纪优秀人才计划的研究内容之后，未来的研究工作主要集中
在以下两个方面：量子网络编码协议设计的研究与量子网络编码安全性的研究。

姿态鲁棒人脸识别算法研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：邓伟洪
项目组成员：邓伟洪，方瑜，胡佳妮，徐前方，安占福，袁彤彤，王洪俊，
 陈炳辉，李珊
结题时间：2017年4月

该项目为教育部“新世纪优秀人才支持计划”项目（批准号：NCET-13-0683）。
该项目取得的主要研究成果如下：
1. 姿态和光照变化下的鲁棒识别：国际上普遍采用姿态和光照密集采集的海量人脸图像
 作为训练样本，学习得到具有不变性的人脸特征。然而，实践中采集此类训练样本的代价巨
 大，造成实用精度无法提高。课题组在已有的人脸通用三维模型下，引入光照迁移，从单幅
 图像生成任意姿态和光照条件下的新人脸，为后续量化姿态区间的分类器提供海量虚拟训练
 样本，在美国Multi-PIE数据库上获得发表时的最高识别率，识别率从80.7%提高至91.1%。
 此外，为了避免上述方法在大规模识别中的存储和效率问题，课题组提出了姿态和光照联合
 归一化方法，解决了学术界对物体自遮挡部位光照估计的难题，实现了任意姿态和光照变化
 人脸的统一处理和识别。
2. 复杂环境下的综合问题：除了姿态和光照，复杂环境下的人脸识别问题还叠加了表情、
 遮挡、化妆、图像质量等因素，是一个综合的问题。深度特征学习是目前应对复杂环境人脸
 识别最有效的方法，然而，Softmax目标函数过早进入饱和状态常导致人脸特征的区分性不
 足。以DeepID为代表的多任务网络一般通过附加样本距离损失函数来增强深度特征的区分
 性，但样本和参数选择导致训练十分困难。为了避免这种困难，课题组通过在目标函数中添
 加随机噪声项，直接延迟网络学习的饱和状态，进而提出了基于加噪Softmax的判别性深
 度特征学习新方法。该方法不仅训练操作简单，而且在LFW人脸验证评测上取得了99.3%
 的单一网络准确率，超过香港中文大学的DeepID2和Facebook的Deepface方法。
3. 细粒度人脸识别新问题：课题组采用众包方式从LFW的图片集中选择出3000组外貌
 形似的人脸作为负样本，代替原数据库中的随机人脸对，构造出新的“细粒度”LFW基准
 测试。在此新基准测试下，原来接近完美性能的深度学习算法只能获得93%左右的准确率，
 明确地揭示了深度学习方法在细粒度人脸识别问题上尚不完善。同时，该数据集的人工标注
 准确率也仅有92%，为研究人类如何区分相似脸提供了独特的平台。
风险决策的神经机制：主动决策与被动决策

研究单位：北京邮电大学经济管理学院
项目负责人：潘煜
项目组成员：潘煜
结题时间：2017年4月

该项目为教育部“新世纪优秀人才支持计划”项目（批准号：NECT-13-0685）。
该项目主要取得以下重大科技进步及标志性成果：
1. 主动决策与被动决策：通过行为学实验仿真气球冒险任务、功能性磁共振成像（fMRI）和在线问卷调研三种方式，分析了主动选择与被动选择过程中的情感体验差异、脑部激活差异与脑神经决策机制，以及人们面对风险时主动选择和被动选择模式的偏好。得到以下代表性结论：
（1）主动决策比被动决策产生更积极的情感体验，包括更多的喜悦感、更少的痛苦感，以及更强的控制感和成就感；
（2）主动决策比被动决策能激活更强的大脑情感回路。进行主动决策会比被动决策分配更多的注意力，且决策反馈失败会引起更强烈的生理体验；
（3）面临风险时，人们更倾向于做主动决策。
2. 风险决策：将风险决策模式分为两人单独决策、两人共同决策和两人轮流决策三种。利用行为学实验仿真气球冒险任务，以及同时记录两人脑电数据的事件相关电位（ERP）技术，研究了不同决策模式下收益、冒险偏好、决策正确率、情感以及脑神经机制等方面的差异。得到以下代表性结论：
（1）两人轮流风险决策比个人风险决策产生更强烈的积极情感体验，包括更强烈的成就感、控制感和喜悦感，以及更低的后悔程度；
（2）两人轮流风险决策比个人风险决策时的收益更好，同时偏向风险规避，决策时间也更长；
（3）两人共同风险决策中，感觉寻求高的被试会显著降低风险，而低感觉寻求的被试风险状况不会改变。感觉寻求总分一高一低两被试的组合会显著降低风险。
3. 与选择相关的研究：依托该项目，还取得了其他与选择相关的研究成果：
（1）采用眼动记录、行为学实验、问卷调查、脑功能磁共振成像技术和（fMRI）的研究方法，通过不同特征的在线面孔对用户选择偏好的探索性实验，发现在线面孔吸引力与信任度对被试选择偏好作用是相互独立的，被试更容易接受在线面孔吸引力较高或者信任感较高的选择项：通过最后通牒博弈实验任务进行改造，在提议者界面将不同特征的在线面孔随机放入，发现在线面孔吸引力与信任度对被试的偏好影响有相互独立的作用，被试更容易接受由信任感较高或者信任感较高的同伴所提出的选择方案；
（2）设计神经科学研究实验，借助核磁共振成像技术，通过与已知与信任相关的脑区的活化程度进行观测，探索在出现针对商家的关于质量问题的负面评论后，道歉和解释对消费者对于商家信任的不同影响机制。结果表明，道歉更多的影响潜在消费者的情绪，进而影响信任，解释则更多的影响信息处理、决策和评价过程。
面向单片光电子集成的异变外延与 III-V 族纳异质结构研究

研究单位：北京邮电大学信息光子学学与光通信研究院
项目负责人：王琦
项目组成员：王琦，刘凯，任晓敏，王俊，刘昊，黄永清，张霞，颜鑫，段晓峰，蔡世伟
结题时间：2017年4月

该项目为教育部“新世纪优秀人才支持计划”项目（批准号：NCET-13-0686）。
该项目克服了材料与器件外延生长所需金属有机化学气相沉积（MOCVD）设备导致的一系列困难，在异变外延生长、III-V 族纳异质结构材料与发光器件方面取得了一系列重要突破和进展，主要研究成果如下：

1. 独立生长并成功制备出了室温连续运转的 GaAs 基 1.1 微米 InGaAs/GaAs 量子阱激光器与量子阱超辐射发光管，以及可连续运转的 InP 基 1.3 微米 InGaAsP 量子阱激光器，打通了制备 III-V 族半导体激光器的材料生长与后工艺。

2. 在高质量的 InP/GaAs、GaAs/Si 异变外延方面取得了重要突破：异变外延材料的质量（位错密度、表面粗糙度）已达到“器件级”水平，GaAs 基异变 1.55 微米 InGaAs/InGaAsP 量子阱激光器实现室温下连续激射，寿命已达到千小时水平；Si 基异变 InGaAs/AlGaAs 量子阱激光器实现了极低阈值室温脉冲激射。

3. 在 InAs/GaAs 自组织量子点生长与发光器件制备方面取得了重要突破：在 Si 上生长出了发光波长位于 1280nm 的高品质异变多层 InAs 量子点有源区；独立生长并成功制备出了室温连续激射的 GaAs 基 1.2 微米 InAs/GaAs 自组织量子点激光器（QD-LD）；与俄罗斯合作成功制备出了 GaAs 基 1.3 微米波段量子点激光器与量子点超辐射发光管，量子点发光器件仍有极大的性能提升空间。

4. 进一步拓展了前述异变外延、低维半导体纳异质结构（量子阱、量子点）的应用领域，将它们与利用微纳自卷曲技术制备自卷曲微米管紧密结合，成功制备出 Si 基悬空 InGaAs/GaAs 自卷曲微米管以及管壁内嵌 GaAs/AlGaAs 单量子阱、InAs 单层量子点增益介质的 GaAs 基 InGaAs/GaAs 悬空微米管，实现了基于量子点微米管的回音壁模式光学微腔和室温光泵激射。

复杂网络骨干结构概念模型及识别方法研究

研究单位：北京邮电大学经济管理学院
项目负责人：张晓航
项目组成员：张晓航，李征仁，宁苡鹤
结题时间：2017年4月

该项目为教育部“新世纪优秀人才支持计划”项目（批准号：NCET-13-0687）。
该项目针对复杂网络骨干结构的概念模型、识别方法、实践应用三个方面展开深入的研究，主要研究成果如下：
1. 复杂网络骨干结构概念模型构建，具体包括：骨干网络基本概念的界定与评价指标体系的设计；关键节点基本概念的界定与评价指标体系的设计；复杂网络骨干结构统一概念模型的构建。

2. 复杂网络骨干结构识别方法研究，具体包括：基于信息扩散的骨干结构识别方法研究；考虑复杂网络典型拓扑特征的骨干结构识别方法研究；结合网络节点与链接非拓扑属性的骨干结构识别方法研究。

3. 复杂网络骨干结构模型在移动客户关系管理中的应用研究，具体包括：复杂网络骨干结构模型在移动客户忠诚管理中的应用；复杂网络骨干结构模型在移动互联网业务信息扩散管理中的应用。

该研究结合骨干网络和关键节点两个维度，构建复杂网络骨干结构研究的统一框架，从骨干结构统一的概念模型到骨干结构评价指标体系，再到多层次的骨干结构识别方法，形成了一个比较完整的理论体系架构。

——石墨烯-二氧化铈异质纳米结构的可控合成及相关特性研究

研究单位：北京邮电大学理学院
项目负责人：雷鸣
项目组成员：雷鸣, 黄凯, 林森, 梁策
结题时间：2017年4月

该项目为教育部“新世纪优秀人才支持计划”项目（批准号：NCET-13-0684）。

该项目主要研究内容如下：

1. 详细研究CeO2纳米立方颗粒-还原氧化石墨烯异质纳米结构的可控合成与电催化特性。利用一种普适性的水热合成法，在不添加还原剂的条件下，一步将氧化石墨烯还原。同时将还原后的氧化石墨烯复合，合成CeO2纳米立方颗粒-还原氧化石墨烯异质纳米结构。并实现CeO2纳米立方颗粒与还原氧化石墨烯的摩尔比连续可调。我们发现CeO2纳米立方颗粒-还原氧化石墨烯异质纳米结构在质子交换膜燃料电池中可以作为耐久和高活性的催化剂载体。研究结果表明：CeO2纳米立方颗粒-还原氧化石墨烯异质纳米结构可以作为自由基清除剂来提高催化剂的耐久性。在0.8-1.23V的高电压下，经过5000次CV循环后，8wt.%CeO2纳米立方颗粒-还原氧化石墨烯结构的催化活性仍能保持原活性的69%，远高于Pt-还原氧化石墨烯催化剂19%的活性保持率。其作用机理在于CeO2纳米立方颗粒具有清除自由基活性的能力，能显著降低Nafion质子交换膜的化学退化，从而缓解Pt催化剂的衰退状态，最终实Pt-CeO2纳米立方颗粒-还原氧化石墨烯纳米复合催化剂的高循环寿命。

2. 详细研究CeO2纳米立方颗粒-还原氧化石墨烯异质纳米结构的可控合成与光催化特性。我们利用有机-无机液相辅助的水热合成法制备出6个表面为[002]的纳米立方颗粒-还原氧化石墨烯异质纳米结构。相应的光催化性能测试表明：CeO2纳米立方颗粒-还原氧化石墨烯异质纳米结构具有更好的光催化特性。其机理在于CeO2纳米立方颗粒的比表面积更大、[002]的光催化活性更强，同时石墨烯具有更好的电子传导特性。

3. 发展了一种高温升华法合成超长氮化铝纳米线，并详细研究了这些纳米线在甲醇燃料电池中的氧还原特性。研究结果表明：这种高温升华法能大量合成无缝缺陷超长氮化铝纳米线，
使得氮化铝纳米线的生产能达到工业化量级。同时发现氮化铝纳米线耐甲醇特性比商业化Pt/C高出一倍。

基于异维结构和能级弥散理论的新奇信息功能器件

研究单位：北京邮电大学信息光子学与光通信研究院
课题负责人：任晓敏
课题组成员：任晓敏，黄永清，王俊，段晓峰，王琦，张霞，颜鑫，刘凯，尚玉峰，蔡世伟，胡劲华
结题时间：2017年7月

该课题为高等学校博士学科点专项科研基金（优先发展领域）资助课题（课题编号：2013005130001）。

该课题对非均匀维度半导体结构中（即维度场中）载流子扩散效应的机理作了透彻的阐释。借助于这一效应，有可能基于单一掺杂类型、亦即单一导电类型的异维结构就能实现半导体 p-n 结器件中必须同时依赖两种掺杂或导电类型才能实现的相关功能。此外，更重要的是，借助于这一效应以及本地态密度的概念，能够得到更为精确、更为普适的相关物理图象与理论模型，将半导体物理学的认知范围从均匀维度结构拓展至非均匀维度结构。同时，发现了包含量子点的异维结构的特殊性，进而基于此类异维结构的研究提出了“后 S-K 异质兼容生长模式”。这一生长模式有可能加速 GaAs 基异质兼容 InP 材料系半导体激光器和 Si 基异质兼容 III-V 族半导体激光器的发展进程。进一步发展了“能级弥散”的概念，提出了全宇观波粒二象性关系和全宇观不确定性关系，拓展了现有光与物质相互作用的理论。提出了全速域狭义相对论理论模型的构建原则：提出了全宇观万有作用力假说。在相关器件研究方面，实现了 GaAs 基异质兼容 InP 材料系激光器的室温脉冲工作和室温连续工作。脉冲工作条件下的工作时间超过了 2000 小时；在 85℃连续工作条件下，寿命达到 80 小时；实现了 Si 基异质兼容 III-V 族激光器的室温脉冲激射，其阈值电流密度为 313 A/cm²，系迄今为止国际上报道的此类器件在同等条件下的最低阈值电流密度。在攻克集成光电子学中异质兼容这一世界公认难题的角逐中增强了我国的竞争实力。同时，研制出了可分别实现高反射、高透射和高 Q 值反射等特性的一维条形亚波长光栅（SWG）、具有宽光谱偏振选择特性的二维 SWG、具有大角度光束偏转功能的非周期 SWG 以及具有汇聚功能的一维、二维和同心圆环型非周期 SWG 以及若干种基于 SWG 的高性能光探测器。其中，所研制的二维非周期 SWG 是国际上首次报道的偏振不敏感非周期 SWG 光栅，这些工作具有重要的应用价值，且为深入探索光与纳结构物质相互作用的机理打下了基础。
社会化网络环境下突发话题检测及演进趋势预测
关键问题研究

研究单位：北京邮电大学网络技术研究院
课题负责人：王文东
课题组成员：王文东，田 野，韩闻文，郭 亮，宋思奇，黄水桂，刘跃杰，
司夏萌，胡 祥，杨昀娟，寇秦荔，丁 茜
结题时间：2017 年 7 月

该课题为高等学校博士学科点专项科研基金（博导类）资助课题（课题编号：
20130005110011）。

该课题针对社会化媒体话题检测及传播关键问题展开研究，主要研究成果如下：
1. 针对社会化媒体中信息质量参差不齐，主题过于泛化的情况，综合信息质量、用户关
注度、用户社会影响力等因素提出了一种传播价值评估（Propagation Value Evaluation, PVE）
模型，过滤海量无关数据，并根据传播价值衡量每条帖子在突发话题检测中的贡献量。进而
引入演化理论进行突发特征检测，将话题类比为有机生命体，将社会化媒体对象类比为话题
生长过程提供营养的食物，话题吸取营养并转化为维持生长的能量，能量值的大小决定了
特征词的状态。综合社会化媒体对象传播价值及词汇在其中的权重计算词汇的营养值大小，
引入滑动窗口机制对“营养-能量”转换过程进行建模，计算出词汇在某个观测窗口的能量值
大小，进而检测出突发特征词集合。在此基础上，以互信息强度定义突发词之间的话题相
关性，构造突发词网络，并运用基于节点相似度的图划分方法从突发词网络中检测出具有
共同主题的突发词集合，完成突发话题的识别。在采集到的数据集上，运用该算法成功地检测
到了多个社会突发事件，证明了算法的有效性。
2. 传统的话题检测方法关注于词汇之间的共现性，却忽略了情感倾向以及时间关联性可
能对话题检测带来的影响。为此，该课题提出了一种动态情感话题模型，该模型不仅能检测
并跟踪话题的变化趋势，同时还能分析公众对某个指定话题所持的情感变化。采用 Gibbs
采样对模型参数进行估计和迭代更新，并利用随机 EM 算法完成参数推断。在真实数据集上
的实验结果验证了该课题所提算法的有效性。
3. 话题在社会化网络中的传播受诸多因素的影响，很难用精确的数学模型对其传播趋势
进行描述。该课题首次将混沌时间序列预测方法引入社会媒体话题传播趋势预测任务，运用
Wolf 方法计算出了话题相关社会媒体对象所对应的时间序列的 Lyapunov 指数，验证话题
在传播过程中表现出的混沌动力学特性。在此基础上，对话题相关社会媒体对象所对应的
时间序列进行相空间重构，恢复出隐含的混沌吸引子并基于最大 Lyapunov 指数预测出了
短期内的话题相关发帖数。实验结果证明了基于混沌时间序列的预测方法在社会化媒体话题
传播趋势预测中的可行性，为深入研究社会化网络环境下话题的传播规律探索了一条新的途
径。

118
时变不确定性下的认知无线电关键技术研究

研究单位：北京邮电大学信息与通信工程学院
课题负责人：赵成林
课题组成员：赵成林，李斌，赵龙，孙梦娓，王鹏彪，范超琼，陆亭宇，孙瑶，梁博，邹斌，南一江
结题时间：2017年7月

该课题为高等学校博士学科点专项科研基金（博导类）资助课题（课题编号：20130005110016）。

该课题的主要研究内容如下：
1. 动态不确定性信道下的频谱检测：针对时变衰落信道下的频谱检测问题，建立了一种新型动态状态空间模型对其进行有效建模。在此基础上，设计提出了联合频谱感知算法。
2. 动态不确定性信道下的感知调度：对时变衰落信道下的认知无线网络感知调度问题进行研究。结合研究内容1所提出的授权用户状态与信道增益联合估计算法，进一步设计提出一种更加灵活的全方位感知调度方案。
3. 动态不确定性下的资源优化分配：提供了一种信道频谱接入方法，根据SU对PU的干扰程度，来选择性地让SU接入信道频段，从而扩大了信道频段接入的用户数量，进而提高了信道频段的利用率。

基于重构的复杂运动视频超分辨率重建

研究单位：北京邮电大学数字媒体与设计艺术学院
课题负责人：李学明
课题组成员：李学明，柳杨，李荣锋，刘晨羽，蒋云飞，向兆威，王维哲，王恒欢，闫博栋，周倩，麻佳琪
结题时间：2017年7月

该课题为高等学校博士学科点专项科研基金（博导类）资助课题（课题编号：20130005110017）。

该课题主要研究复杂运动条件下的视频图像超分辨率重建算法。它通过对低分辨率视频序列进行超分辨率重建，输出分辨率更高、细节更丰富的重建图像。主要研究成果如下：
1. 提出了一种鲁棒的基于矩阵填充的视频超分辨率重建算法：该算法充分利用视频在时域和空域上的冗余信息，提取多尺度非局部相似图像块进行匹配，进而很好地保留图像边缘。该方法在匹配阶段通过剔除外点，降低误匹配对重建带来的影响；使用ADMM求解低秩矩阵，使用低秩矩阵前n列进行加权融合，获得清晰度更高的高分辨率图像块。实验表明：该算法能够有效的对具有复杂运动的视频进行超分辨率重建。但是由于矩阵填充受到观测点数量的影响，该算法对图像放大倍数有限制。
2. 提出一种基于卷积神经网的单幅图像超分辨率重建算法：该算法使用固定3X3的卷积核提取梯度信息；采用深度为6层的卷积神经网提取图像特征，重建出边缘更清晰的图像，并在一定程度上抑制了边缘的振铃效应；使用更大的样本库进行训练，避免发生过拟合。实
验结果表明：在 ImageNet 这类大训练库上，该算法重建的高分辨率图像在主观视觉感受和客观图像质量评价上都有更好的表现。

3. 针对超分辨率重建中的图像特征配准问题：提出带描述子的 Harris 角点特征配准和改进的图形上下文匹配等算法等。这些方法能有效提高分辨图像的配准效果，进而提高图像超分辨率重建的效果。

基于激活力的多层文本语义网络

研究单位：北京邮电大学信息与通信工程学院
课题负责人：郭 军
课题组成员：郭 军，徐蔚然，陈 光，高 升，李 岩，张春云，张佳玥，秦鹏达
结题时间：2017 年 7 月

该课题为高等学校博士学科点专项科研基金（博导类）资助课题（课题编号：20130005110004）。

该课题研究了激活力模型的理论意义和改进模型，包括：词激活力模型的含义研究、基于激活力的文档语义表示模型、激活力模型的高效算法、以及表示学习理论模型研究；研究了基于激活力模型的文本处理方法，包括：基于单个词语语义处理的方法、句子语义处理方法、基于激活力的文本分析方法、以及基于激活力模型的网络数据处理方法；构建了一些实际系统和模型，包括：“校园对象搜索系统”，参加了美国 NIST 举办的 TREC 和 TAC 系列的文本处理关键技术测试，也获益于激活力模型的研究成果。

基于 3D 信道模型的信道估计和波束赋形的研究

研究单位：北京邮电大学信息与通信工程学院
课题负责人：张建华
课题组成员：张建华，王 强，田 磊，王禹凝，刘萌萌，徐 超，何晓丹，徐佳祥，申 超，张梦瑶，孙 韬
结题时间：2017 年 7 月

该课题为高等学校博士学科点专项科研基金（博导类）资助课题（课题编号：20130005110001）。

该课题开展基于 3D 信道模型的信道估计和波束赋形的理论和仿真研究工作，并积极将研究成果转化为文章和专利等，在 3D 技术的理论和应用方面取得了丰硕的成果。主要研究成果如下：

1. 较小导频开销的适用于 3D 信道的导频图案设计，基于 3D 信道模型的信道估计算法：给出了频域、时域以及空间竖直方向上的频域间隔限制条件，然后验证了三种 4D 导频模式以及级联的 Wiener 滤波器的性能；利用信道的稀疏特性，可以进一步减少了导频数量，设计了在信道压力感知中的导频模式；提出一种改进的信道压缩感知方法；提出一个更加一般性的时变信道模型并且利用改进的基扩展模型，提出一种基于子空间的信道估计算法。公开
了一种大规模多输入多输出通信系统的资源分配方法，以通过简便易行的方法解决导频污染存在时，多小区多用户之间出现相互干扰的技术问题。

2. 基于 3D 信道模型的单/多用户波束赋形技术：通过理论研究和仿真分析传统的波束赋形算法是否适用于 3D 场景，针对 MVDR 算法在 3D 场景下性能很差的问题，提出了去除噪声特征值的改进方法；另外还考虑了水平和垂直分解方案，从阵列因子角度证明了分解方法是可行的。

3. 新增加了关于 3DMIMO 信道测量与建模的研究：研究了信道测量的合理性及注意事项；在已有 3D 信道测量数据和分析成果的基础上，研究了产生 3D 信道的基本流程；利用理论分析的方式提出一个一般性的 3D 非平稳信道模型；通过测试系统中心的天线阵列进行优化，并采用 Zadoff-Chu 序列和并行接收等技术，实现对信道多径特征的充分记录；采用粒子群优化等多径参数估计算法，实现信道多径特征的精确估计，从而消除所记录信道冲激响应中的天线响应。

太空机械臂精细操作控制策略研究

研究单位：北京邮电大学自动化学院
课题负责人：贾庆轩
课题组成员：贾庆轩，陈钢，刘勇，张龙，袁博楠，洪训超，王艺儒，徐涛，王宣
结题时间：2017年7月

该课题为高等学校博士学科点专项科研基金(博导类)资助课题(课题编号：20130005110009)。

该课题瞄准未来空间在轨应用技术，提出了太空机械臂精细操作概念，并重点研究了以实现精细操作作为目标的空间大型结构在轨操作过程中的控制策略研究，并在此基础上搭建了太空机械臂在轨精细操作过程仿真及实验验证平台，对提出的最优任务搜索策略、轨迹跟随算法和力/位混合控制策略进行了验证。

该课题首先分析了太空机械臂精细操作的基本需求，建立了太空机械臂精细操作影响因素集，并提出了考虑多约束条件的任务剖面分析方法，在考虑有限资源及避障需求的基础上，实现了太空机械臂自主任务规划和最优任务轨迹的选取；然后，针对太空机械臂常需执行大负载操作任务的特点，提出了负荷操作能力最优的关节空间平滑轨迹规划方法和末端点到点轨迹跟踪策略，实现了大负载操作任务下的太空机械臂精细操作的中间过程规划；然后，在太空机械臂平滑跟踪轨迹的基础上，开展了对接过程中接触空间的力/位混合控制方法研究，并提出了相应接完成后控制模型切换策略和对操作控制策略，保证了在轨精细操作任务的顺利完成，由此组成一套由预期处理、中间规划及最终实现的太空机械臂精细操作任务流程；最后，搭建了由气浮平台、机械臂系统、控制系统、目标星系统及传感测量系统组成的空间机械臂精细操作地面实验平台，并且基于 VC++搭建了空间对接碰撞机械臂中央控制及可视化仿真集成软件，用来控制机械臂运动，控制各类传感器进行实验数据的采集及分析、绘图，验证了该课题所研究理论的正确性和实用性。

该课题的理论研究成果有：考虑多约束条件的精细操作任务剖面分析方法，自由空间中太空机械臂精细操作轨迹控制策略，接触空间中力/位混合控制策略和对接完成后的稳定控制策略及控制模型切换策略等。
该课题的研究成果可以为我国未来太空机械臂的在轨应用、空间站的构建等提供理论依据及参考，为我国的航天事业做出一定的贡献。

面向云服务数据中心的全光交换网络设计理论

研究单位：北京邮电大学信息光子学与光通信研究院
课题负责人：伍 剑
课题组成员：伍 剑，郭宏翔，左 勇
结题时间：2017年7月

该课题为高等学校博士学科点专项科研基金（博导类）资助课题（课题编号：20130005110013）。

超大规模云服务数据中心是未来云服务时代的基础设施。该课题围绕超大规模云服务数据中心通信网络面临的重大挑战开展相关基础理论及技术研究，是我国发展下一代绿色信息技术和战略新兴产业的重大需求。该课题主要研究内容包括：云服务数据中心环境下的数据交换模型、全光交换网络结构、大动态数据的弹性传输、业务驱动的时延可控且高可靠的自适应协议栈、软定制跨层控制理论等。主演研究成果如下：

1. 全系统网络模拟器的搭建和真实场景网络流量的测评，通过对云服务应用流量的检测、评估和预测，基本掌握了云计算应用服务等新应用的流量模型和通信模式。

2. 创新性地提出了具有小世界特性的云服务数据中心的OpenScale网络架构，开发了具有弹性动态带宽调整和动态网络拓扑重构能力的光接口，不仅搭建了由基于FPGA的数据交换平面和基于SDN的控制平面构成的原型平台，还搭建了大规模拓扑和网络性能分析仿真平台用以补充验证网络架构性能。

3. 通过改写开源内核TCP协议栈，开发了一种能够支持光层重构策略的改进的传输控制协议，以适应光层传输机制。同时，还搭建了协议开发平台和用于测试协议性能的云计算业务Benchmark平台。

4. 基于OpenFlow集中控制协议，开发了面向云服务的全光网络软控制平台，井利用软控制平台设计和验证了多种面向云服务的交换控制机制，包括虚拟机或数据迁移控制机制、拓扑重构控制机制、动态带宽调度控制机制、面向Coflow的控制机制等。

该课题提出的光交换架构巧妙的迎合了数据中心内部复杂多变的流量变化规律，同时充分发挥了光交换优势，突破了光只作为媒介的传统网络架构思维瓶颈，在国内外光交换研究中独树一帜，成就领先。

该课题研究不仅可以带动相关光纤传感系统的研究发展，所得结果对于未来远距离光纤传感技术也具有重要的借鉴价值。
金属微纳结构对量子点荧光的天线发射

研究单位：北京邮电大学理学院
课题负责人：王鲁橹
课题组成员：王鲁橹，丁银兴，崔茹娜
结题时间：2017年7月

该课题为高等学校博士学科点专项科研基金（新教师类）资助课题（课题编号：20130005120012）。

该课题主要研究内容如下：
1. 研究了表面等离激元在金属纳米台阶结构中的传输特性，发现当表面等离激元从台阶下表面传输到上表面时，存在3种不同的传输机制：光学耦合传输，表面等离激元的光场部分直接在上表面激发表面等离激元；电学耦合传输，台阶下表面中表面等离激元的电子震荡通过金属内部耦合到上表面；法布里-珀罗腔耦合传输，表面等离激元通过台阶竖直表面所构成的法布里-珀罗腔耦合到台阶上表面并进行能量传输。结合这三种耦合传输方式，可以对金属纳米台阶的传输曲线进行很好的解释。
2. 在对量子点荧光的观测过程中，发现了一种分析高斯光斑的统计方法，通过对光斑图像像素值的统计分析，可以很方便的得到高斯光斑的光强、束腰半径等信息，相比于传统的高斯拟合方法，我们的方法极大地降低了分析时间。
3. 研究了量子点-银纳米线耦合体系的量子点荧光的偏振特性，发现在不同的激发和收集方式时，量子点荧光强度和激发光的偏振特性截然相反，收集到的荧光信号偏振状态也不同。结合仿真计算，我们找到了产生这一现象的原因：在不同激发方式中，银纳米线作为接收天线，会产生不同的近场分布，从而激发不同位置的量子点荧光。之后，银纳米线又作为发射天线，对不同偏振的荧光产生不同的散射效果。我们的结果实现对荧光粒子的可调控发射，可以对原有的量子点-光学天线耦合系统的调控研究提供参考。

兼容多频多制式和 MIMO 无线通信系统的 RoF 传输技术研究

研究单位：北京邮电大学信息光子学与光通信研究院
课题负责人：李建强
课题组成员：李建强，尹飞飞，曹明华，樊宇婷，陈皓，于雪梅
结题时间：2017年7月

该课题为高等学校博士学科点专项科研基金（新教师类）资助课题（课题编号：20130005120007）。

光载无线（RoF）技术的特点使其能够为无线异构网络融合以及多种宽带无线接入业务的低成本覆盖提供一种有效途径。该课题深入的研究了支持多种无线制式和标准，具有超大带宽，低成本、低误码率和高频谱效率的 RoF 系统。主要研究内容如下：
1. 适用于多频段多业务 RoF 系统中的副载波复用技术：提出了适用于多频段 RoF 系统的低复杂度预失真方法。其中基于数字信号处理的多维数字预失真技术，在不增加硬件复杂
度和计算复杂度的前提下，实现了多频带 ROF 系统的非线性补偿，功率效率提高一倍以上。进而基于多维记忆多项式模型，该课题还提出了多频带数字失真技术，既考虑频带内失真项，又考虑频带间的交调失真项。数字失真技术结合数字预失真技术，针对中心站功能集成、远端参数简化的实际光载无线系统架构，提供了一整套上行下行链路的非线性补偿技术，为光载无线系统的产业推广提供了坚实理论依据。

2. 基于模式耦合分集的 MIMO 无线信号多模光纤传输机制：将模式耦合分集技术引入到 ROF 系统中，提出了基于模式耦合分集的 MIMO 无线信号多模光纤传输机制。利用光子灯笼作为该方案的耦合及解耦合器件，通过单根普通多模光纤传输多路 MIMO 信号，大大降低了系统部署成本，为 MIMO 无线信号的室内分布提供了一种高效、经济的解决方案。同时，随着技术的发展及生产工艺的进步，未来可仅通过更换相应的模式复用器和解复用器便可支持系统的平滑升级以支持更高维的 MIMO 信号分布。

基于产学合作网络的大学知识溢出效应研究

研究单位：北京邮电大学经济管理学院
课题负责人：田华
课题组成员：田华，王昭慧，张学文，刘志皓，周洪，唐一薇，肖彦，兰冰，葛婷婷
结题时间：2017 年 7 月

该课题为高等学校博士学科点专项科研基金（新教师类）资助课题（课题编号：20130005120001）。

开放式创新情境下如何进一步拓展产学合作的开放广度、开放幅度和交互强度，促成大量有价值、有意识的大学知识溢出，并充分发挥大学知识溢出创业的作用，特别是对极具创业精神和创新发现的大学衍生企业创生和成长的促进作用，需要进行大量挖潜性研究。

该课题以产学合作网络中的大学知识溢出为研究对象，重点运用理论分析、实地调研、深度访谈、问卷发放和实证分析等研究方法，构建大学知识溢出对衍生企业创新绩效影响研究框架，探讨基于不同的网络分布类型和企业吸收能力，大学知识溢出对大学衍生企业创生与成长的影响。进而提出促进产学合作网络中知识溢出的制度安排和提升大学衍生企业创新能力的政策建议。研究发现，校友创业活动是产学合作创新网络中大学知识溢出创业的重要表现形式和溢出途径，本质上是以校友为载体的创业的创造力溢出（creativity spillover of entrepreneurship），是对由产学合作网络创造出来却无法彻底实现知识商业化机会的内生性响应。该研究基于数字创业生态系统的视角，梳理国内外校友创业研究现状，为后续研究深刻把握校友创业活动的特征及规律，阐明影响校友创业公司（Alumni Start-ups）创业的主要因素，分析要素之间的作用关系以揭示校友创业企业的创生和成长路径，剖析校友创业与所在区域财富增长的内在关系及协同演进规律提供理论基础。该研究为进一步准确测量产学合作网络中的知识溢出效应提供了可操作的分析单元，有利于解决现实调研过程中专家所提“大学知识溢出究竟能干什么的”疑问。该研究对于丰富大学知识溢出的理论内涵，拓展基于创新的创业理论具有重要的理论意义。研究成果为深化我国大学知识溢出创业实践（基于创新的创业）、推进产学研协同创新提高大学技术转移和学术成果商业化效率、优化知识溢出创业行为、提升创业质量提供必要的理论指导和实践支持。
基于部分信道状态信息的协作中继和协作干扰技术研究

研究单位：北京邮电大学信息与通信工程学院
课题负责人：龙 航
课题组成员：龙 航，郑 侃，郑 强，陈家玓，张晓莉，张诚诚
结题时间：2017 年 7 月

该课题为高等学校博士学科点专项科研基金（新教师类）资助课题（课题编号：20130005120003）。

该课题以提高无线通信系统的安全性为目标，研究无线中继窃听系统的保密容量，考虑信道状态信息不完整情况下的协作中继和协作干扰研究，对物理层安全的工程应用提供了理论基础。

该课题根据中继系统的信息传播方向将其分为单向中继系统和双向中继系统，分别进行了细致深入的研究，提出了基于部分信道状态信息的协作中继和协作干扰设计，降低了传统物理层安全方法对精确的信道状态信息的要求。

面向物联网视频数据中心的大数据分布式计算理论研究

研究单位：北京邮电大学计算机学院
课题负责人：张海涛
课题组成员：张海涛，高一鸿，赵晓萌，杨贤达，唐 毅，姜 哲，严 瑾，
高东海，孔祥起，李红梅，杨 蕾
结题时间：2017 年 7 月

该课题为高等学校博士学科点专项科研基金（新教师类）资助课题（课题编号：20130005120011）。

该课题联合考虑视频信息处理和大数据技术的特点，研究面向物联网视频数据中心的大数据分布式计算理论，主要研究成果如下：

面向视频监控的云存储系统架构；监控视频元数据建模、组织与索引机制；基于任务预测模型的监控视频大数据分布式放置策略；监控视频云计算平台负载预测模型；面向监控视频的离线分布式处理中间件及任务调度方法；监控视频云计算平台虚拟资源动态调度机制；云计算平台中监控视频大数据在线处理任务管理机制；基于工作流图的高效在线监控视频处理框架；视频数据中心实时分布式并发任务调度方法；视频监控中基于组合特征的人员重识别方法；大规模交通监控视频元数据分析与校正方法。
基于时空频多维一体化交换的光节点实现技术研究

研究单位：北京邮电大学信息光子学与光通信研究院
项目负责人：郁小松
项目组成员：郁小松，赵永利，张会彬，高冠军，张杰，李亚杰，李博，宁贤，曹原
结题时间：2017年7月

该项目为中国博士后科学基金资助面上项目（项目编号：2016M600970）。

随着光网络时分复用和波分复用技术的成熟和发展，光纤资源在时域维度和频域维度已利用殆尽，单模光纤的传输容量已接近香农极限，因此迫切需要从空域维度来实现光纤通信系统传输容量的进一步提升。在这种背景下，未来光网络势必朝着时/空/频多维一体化交换方向演进。该项目围绕多维一体化光交换节点实现技术，探索其构建方法和控制机制，主要研究多维一体化光节点的路由频谱分配模型、频谱碎片整合优化方法、资源虚拟化抽象算法等内容，主要研究成果如下：

1. 针对多维复用光网络中节点路由，核与频谱资源分配问题，引入了污染区域的概念，分析了污染区域与频域光通道保护带宽之间的关系，提出了基于串扰感知的带宽共享频谱分配算法，并进行了仿真验证。仿真结果表明：所提出的算法相比现有算法具有更低的阻塞率。

2. 针对多维复用光网络中频谱碎片问题，详细研究了光网络中频谱资源重构与优化策略，对目前的资源重构技术进行了详细的分析对比，在此基础上，提出了基于匹配因子的资源重构与优化算法。仿真结果表明：该算法具有较低的业务阻塞率。

3. 针对多维复用光网络中资源虚拟化问题，提出了多维资源切片模型，并在此基础上提出了基于多维切片的资源虚拟化映射算法。仿真结果表明：所提算法在业务阻塞率、资源利用率及收入花销等方面都具备较好的性能。

该研究成果实现了对时/空/频多维复用光网络现有模型的补充，建立了多维复用光网络路由，核及频谱分配相关数学模型，为后续研究提供了理论基础。同时，提出了多维复用光网络中频谱碎片优化机制，有效提高了光网络资源利用效率。其技术的进一步研究与发展有望有效降低未来光网络的经济成本，为未来光网络大容量、高速率、绿色节能的发展方向做出贡献。

基于云模型的蚁群分布式系统研究

研究单位：北京邮电大学网络空间安全学院
项目负责人：李丽香
项目组成员：李丽香，彭海朋，王卫苹，赵大伟，谢冬，鲁艳蓉，赵慧，王静涛，秦小立，郑明文，陈永刚
结题时间：2017年1月

该项目为中国博士后科学基金面上资助项目（项目编号：2013M540070）。

该项目提出了“蚁群由混沌态经过混沌退火建立最优路径”的新观点，构建了蚁群新模型，揭示了蚂蚁由混沌到周期行为的内在转变机制，发现了蚁群通过学习策略获得可持续性
捕食，该策略可以优化互联网，提出了复杂网络系统的一系列同步策略，实现了忆阻神经网络的反同步。构造了多层网络的病毒传播模型，分析了病毒传播规律，揭示了多层网络病毒传播机理。该项目计算出 NLFSR 生成序列中不同长度周期序列的数量，从而解决了 NLFSR 周期分析这一开放性问题，提出了正向与反向一致算法，该方法在密码学及信息安全领域将有广泛的应用。基于椭圆曲线公钥密码算法设计了一个新的移动网络匿名漫游认证协议，所提协议可实现用户匿名、用户友好性、本地口令验证等移动漫游认证协议所需的多种特性。

用户行为驱动的异构网络资源联合适配机制研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：范绍帅
项目组成员：范绍帅
结题时间：2017 年 7 月

该项目为中国博士后科学基金资助面上项目（项目编号：2015M581030）。

该项目主要研究内容如下：

1. 针对无线异构网络资源虚拟化以及高效利用问题进行了研究：利用网络运维过程中积累的大量用户对资源利用的历史信息记录，提出一种基于深度神经网络的资源虚拟化模型用于将非正交无线资源虚拟化量化为正交资源，屏蔽物理资源表征差异，并建立了虚拟资源消耗模型用以衡量一定网络状态下为满足用户需求所消耗的网络虚拟资源量。在此基础上，提出一种基于资源虚拟化的网络选择方案。

2. 针对多层异构网络场景下基站对用户行为的主动感知及节能优化问题进行了研究：为提升基站的环境感知能力和自主决策能力，提出了一种基于 K 层异构网络中基于活跃用户感知的基站激活/休眠方案，该方案通过基站对活跃用户的行为感知以完成基站的激活/休眠决策，完成网络部署与用户需求分布的适配。并采用随机几何理论分析了所提方案中活跃用户检测概率以及小区关联偏置因子对所能达到的覆盖率、网络容量以及网络能耗性能的联合影响，分析过程兼顾了用户及小区部署位置的随机性、小区选择的不确定性、信道状态以及产生的干扰等因素，所完成的理论分析及性能验证为高能效基站激活/休眠方案的设计提供了有效依据。

3. 针对基于用户间通信的内容高效多播分发问题进行了研究：首先兼顾用户物理域及社交域的多维属性，对用户的多维中心度进行衡量以反映用户的内容分发能力。基于用户的多维中心度提出了 D2D 多播分簇的方案，完成内容分发途径与用户多维属性的适配。结合 D2D 多播分簇结果，构建二部图并采用 Kuhn-Munkres 算法研究提出了对多播簇的信道分配方案。
基于“互联网+”的城市快递末端协同配送体系研究

研究单位：北京邮电大学自动化学院
项目负责人：杨萌柯
项目组成员：杨萌柯，周红艳，范静静，王丹蕾，张诗冉，曾若兰
结题时间：2017 年 6 月

该项目为中国博士后科学基金资助面上项目（项目编号：2016M600972）。
随着移动互联网和电子商务的蓬勃发展，快递物流业进入飞速发展期。然而“暴力分拣”、“爆仓”、“最后一公里”配送难等现象不断凸显，现行快递配送模式已无法满足人们对快递越来越高的服务质量要求，探究一种新的末端配送模式迫在眉睫。
该项目基于移动互联网、云计算、大数据等“互联网+”技术的发展，将共同配送理念应用于城市快递末端，提出以智能快递柜共同配送为主，以社区零售店 O2O 应用等为辅的城市有限区域共同配送模式；通过城市快递物流协同服务网络的优化和重构，建立大数据分析系统和 O2O 电子商务系统，构建基于云平台的城市快递末端协同配送体系；从而有效解决“最后一公里”及“最后一百米”配送难题，节约快递公司成本，提高资源利用率；减少车流量，缓解城市交通压力和空气污染问题；对促进非首都功能疏解，京津冀一体化协同发展，实现我国城市快递配送服务体系的规范化、系统化、智能化、绿色化，具有重要科学意义和应用价值。

线粒体靶向诊疗纳米颗粒在肿瘤细胞光动力治疗中的应用

研究单位：北京邮电大学电子工程学院
项目负责人：王小卉
项目组成员：王小卉
结题时间：2017 年 5 月

该项目为中国博士后科学基金资助面上项目（项目编号：2016M591126）。
在癌症诊疗领域，构建整合药物治疗、靶向运输以及疗效监测等功能于一体的诊疗纳米体系具有十分重要的意义。光动力疗法是一项基于光敏药物吸收辐射光产生高活性氧，进而诱导肿瘤细胞凋亡的治疗技术。由于线粒体在细胞凋亡中起重要作用，高效地将药物输送至线粒体并表征其呼吸活性是十分关键的。
该项目主要研究内容及所取得的成果如下：
1. 构建一种高光动力治疗效果的线粒体靶向诊疗纳米颗粒：选用三线态寿命长的疏水性有
机分子 Pt(Ⅱ)卟啉化合物同时作为光敏剂和氧气探针分子，利用再沉淀包覆法将其封装到纳米颗粒内部，制备了多聚赖氨酸包覆的多功能纳米颗粒，并基于胺基偶联化学在颗粒表面连接线粒体特异性识别序列，使其具有线粒体靶向性。应用激光共聚焦显微镜和透射电镜分析纳米颗粒在细胞内分布以及对线粒体的靶向特性，分析影响纳米颗粒线粒体靶向性的因素并予以优化。通过检测纳米颗粒的单线态氧产率，筛选获得高功效的光动力纳米药物。
2. 建立一种基于氧气消耗率检测的原位疗效评估方法：将线粒体靶向诊疗纳米颗粒与
HepG2 肿瘤细胞共同孵育,利用时间分辨荧光技术检测线粒体内的氧气探针在不同氧浓度下的荧光寿命,绘制荧光寿命与溶氧量的校准曲线。基于该校准曲线,将荧光寿命转化为氧含量,并用于检测线粒体内氧含量变化。通过分析不同细胞密度下线粒体氧消耗速率的变化,研究氧气消耗与细胞存活率的关系,进而发展可以基于氧消耗率变化来评估细胞存活率的新方法 (OCR)。定义线粒体内氧消耗率为初始和平衡态起点之间的氧气浓度变化量与间隔时间之比,即 \(R = \frac{\Delta C[O_2]}{\Delta t} \)。根据此公式,可以计算不同条件下的氧消耗率。

3. 分别利用 OCR 和 MTT 方法评估光动力诱导的 HepG2 细胞损伤效果:将 HepG2 细胞与功能纳米颗粒共孵育后,进行光动力治疗,然后基于纳米颗粒的氧传感特性检测不同治疗参数下线粒氧气消耗速率的变化,评估细胞的损伤情况。利用该方法和常规细胞活性 MTT 检测方法研究光动力治疗参数对 HepG2 肿瘤细胞存活率的影响,获取最佳的给药剂量和光辐照剂量等参数;并且通过 Live/Dead 染色激光共聚焦显微镜研究 HepG2 肿瘤细胞的形貌和损伤状态,进一步验证功能纳米颗粒对肿瘤细胞的光动力治疗效果。

内容中心网络路由器高速缓存数据结构研究

研究单位: 北京邮电大学信息与通信工程学院
项目负责人: 潘恬
项目组成员: 潘恬
结题时间: 2017 年 10 月

该项目为中国博士后科学基金资助面上项目 (项目编号: 2016M590068)。
该项目针对内容路由器中高速缓存模块的性能瓶颈,通过数学建模、数据结构、系统结构优化,提出一种流量疏导机制,缓解性能瓶颈。主要研究成果如下:

1. 提出一种面向高性能内容路由器体系结构的数学模型,并基于该模型分别分析了基于流水线 (pipeline) 和基于并行 (run-to-completion) 架构的内容路由器 FIB、PIT 和 CS 三个核心模块间的相互交互情况。基于排队网络和 M/M/c 模型的分析证明了在高速流量的冲击下,CS 模块最容易成为整个系统的性能瓶颈。该模型从内容路由器系统的角度出发,给出了系统性能瓶颈的定量分析,这将指引研究者更多关注对 CS 的性能优化。

2. 提出一种面向内容路由器高速缓存模块 (CS) 的数据结构设计,其核心思想是利用网络流量中广泛存在的的时间局部性和空间局部性信息,优化传统的跳表数据结构。在该数据结构中,每次查询完内容所在索引信息后会将该信息进行记录,当下一次查询请求到来时,根据内容块号判断是否是顺次到达的请求,如果是,则只需要从上一次记录的跳表结点重新开始遍历,避免了每次查找都跳表的头结点重新开始遍历,因此大大提高了查找效率。实验结果表明,局部性原理跳表可以在 x86 处理器上实现 1.796Mpps 的单线程吞吐率。

3. 提出一种基于非阻塞访问机制的内容路由器体系结构设计。针对高速流量在 CS 模块前方队列拥塞的情况,提出了引导堆积流量绕过 CS 模块,经过相对空闲的 PIT 和 FIB 模块直接向上游较空闲路由器转发的设想。在具体实现方面, 使用了 Linux 的 libeio 库进行非阻塞 I/O 的实现;最后该项目探索了面向以上非阻塞内容访问机制的新型传输层控制协议。实验结果显示,非阻塞内容缓存机制相可以将端到端时延降低 70.1%。
面向负载优化的分层异构网络协同用户关联机制

研究单位：北京邮电大学网络技术研究院
项目负责人：丰 雷
项目组成员：丰 雷，周凡钦，赵 攀，郭红福，赵雪尧，祝淑琼，程 晓
结题时间：2017年11月

该项目为中国博士后科学基金资助面上项目（项目编号：2017M610827）。
该项目以蜂窝异构网络的协同资源调度理论为基础，通过对用户关联机制的研究，实现分层异构覆盖系统下的网络负载优化。主要研究内容如下:

1. 基于对业务负载模型的研究及C-RAN的网络特征，提出基于负载预测的C-RAN虚拟基站资源调度算法，保障C-RAN对用户接入的处理能力。

2. 基于小区间的多点协作通信技术，研究LPN密集组网下用户与协作小区间的关联模型与优化策略，实现业务质量与小区负载率的联合优化。

3. 利用WiFi、毫米波等RAT技术所构成的LPN，提出面向负载均衡的多RAT网络间协同用户关联策略，提升不同RAT网络的资源利用率。

总之，该项目旨在通过针对用户关联的网络协同优化技术解决分层异构蜂窝系统的负载优化问题，提升无线网络资源利用率，为蜂窝异构网络无线资源管理技术的相关研究提供理论基础。

该项目对基于网络协同的用户关联机制来实现分层异构蜂窝系统的负载优化展开了研究，提升了无线服务质量，增强了网络资源利用率，对分层异构无线网络资源调度与管理技术的理论研究具有重要意义。

面向配用电通信网的传感器故障容忍和监测机制

研究单位：北京邮电大学网络技术研究院
项目负责人：邵苏杰
项目组成员：邵苏杰，邓祎玮，陈智辉，叶晓彤，刘 阁，张文豪
结题时间：2017年11月

该项目为中国博士后科学基金资助面上项目（项目编号：2016M600971）。
该项目面向配用电通信网的传感器网络的运行、维护和管理需求，针对目前缺乏对故障容忍和故障监测与不同监控应用需求切实结合的研究；不能从传感器使用前对传感器网络故障容忍能力进行有效规划；缺少针对网络故障容忍程度预估的容忍评估方法；故障监测过程中缺乏对数据关联性、节点角色和故障类型的综合考虑等问题展开相关研究，主要研究内容如下:

1. 在故障容忍方面：提出基于N-X原则的传感器容忍规划策略，提高网络对故障的容忍能力，针对缺乏对网络故障容忍程度预估的问题，提出基于多场景下保障N-X的容忍评估模型，为网络的故障容忍的程度提供评估方法。

2. 在无线传感器网络的故障监测方面：从传输与数据融合两方面提出基于节点可信度和邻居协作的分布式传感器网络故障监测方法，构建一种基于模糊层次聚类的传感器网络故障监测自适应调整算法，提高网络的自主维护能力。
该项目的研究内容是针对面向配用电通信网的传感器网络的故障容忍与故障监测机制，能够有效的保障配用电通信网无线传感器网络的可靠性和持续运行能力，有着重要的理论意义和现实需求。

变量分析框架下基于贝叶斯先验的单声道语音增强理论与模型研究

研究单位： 北京邮电大学信息与通信工程学院
项目负责人： 马占宇
项目组成员： 马占宇，吴铭，司中威
结题时间： 2017 年 4 月

该项目为教育部留学回国人员科研启动基金项目。语音信号处理技术是一项基础技术研究工作，在无线通信，语音识别，助听器设计等方面都有着较为广泛的应用。随着无线通信业务的普及和手机用户规模的扩大，人们日常生活中会经常面临噪声干扰下的语音通信，不同的场景，如汽车上，市场里，工厂中，会带来不同的噪声类型和噪声强度，给语音通信带来很大的不便。因此，能够自适应环境噪声类型的语音信号处理技术在提高语音编码性能，改善语音通信质量发挥着重要的作用。

该项目提出了基于扩展变分法框架的语音信号处理方法，通过深度神经网络来提取语音动态特征，构建 HT 模型来克服语音特征分布不平衡的问题，并将其成功应用在了说话人识别、spoofing 检测等重要研究领域，取得了较好效果。

毫米波亚毫米波及太赫兹准光技术的研究

研究单位： 北京邮电大学电子工程学院
项目负责人： 刘小明
项目组成员： 刘小明，陆泽健，王海，杨诚，程方圆，王婧娟，焦天栋，曹晓航，李卓，赵曜，齐冰冰，刘小沛
结题时间： 2017 年 3 月

该项目为教育部留学回国人员科研启动基金项目。该项目主要展开了对毫米波、亚毫米波准光技术的研究，特别是天线系统相关技术的研究。毫米波、亚毫米波天线系统主要包括以下几个部分：馈电部分，光路调节部分，信号辐射（接收）部分。馈电部分是天线系统与信号处理部分的接口部分，在毫米波、亚毫米波天线系统中，馈电部分主要是喇叭天线，最常用的是波纹喇叭天线。光路调节器件有频率选择表面、极化选择表面、反射镜面等。频率选择表面的功能是将接收的宽带信号分成几个可用的频段；而极化选择表面是将信号的不同极化分成两个可处理的极化方式；另外，反射镜面实现光束大小的调节，使能量更集中，并使波束大小与馈源相匹配。主要研究内容如下：

1. 设计并加工了毫米波与太赫兹频段的频率选择表面；该毫米波器件已经应用在准光系统和高功率系统的分频。
2. 设计并加工了毫米波的极化选择表面。
3. 设计并加工了毫米波波段的馈源。
4. 改进了光路的设计方法及反射镜面的设计方法。

业务支撑系统信息模型关键技术研究

研究单位：北京邮电大学计算机学院
项目负责人：宋美娜
项目组成员：宋美娜，鄂海红，欧中洪，于艳华，王晓晖，宋俊德，姜海鸥，臧进进，刘艳民，田鹏程，王金如，童俊杰，邓江东

结题时间：2017年7月

该项目为教育部-中国移动科研基金项目（项目编号：MCM201303111）。该研究的主要研究内容如下：
1. 中国移动各省业务支撑系统信息模型对标研究。
2. 业务支撑系统信息模型体系结构、信息资源服务及规范研究。
3. 信息模型原型验证系统与测试平台。

该项目研究了适用于构建新一代业务支撑系统的信息模型、定义数据分布原则、明确数据服务开放机制、制定数据架构管控方法，为后续公司开展新一代业务支撑系统建设积累技术基础，提升公司对新业务模式的支撑能力、对新技术的引入能力、对各省系统架构的自主管控能力和标准化程度。

该项目攻克了信息模型标准化及测试方法等的关键核心技术。针对中国移动各省业务支撑系统信息模型对标研究，提出了省级系统信息模型对标方法：形成典型域“省级实现信息模型库”和“标准模型库”1套；提交省级系统与NGBOSS规范信息模型对标分析报告1份；提交省级业务支撑系统建设演进建议报告1份。针对业务支撑系统信息模型体系结构、信息资源服务及规范研究，该项目提交了下一代业务支撑系统信息模型体系架构方案报告1份、下一代业务支撑系统信息模型规范草案1份、业务支撑系统信息资源开放服务解决方案1份；提交业务支撑系统信息模型国际标准化建议或草案1份。针对信息模型原型验证系统与测试平台研发，该项目形成了业务支撑系统信息模型测试标准企业规范1份；完成信息模型原型验证系统与测试平台软件1套。

该项目深入掌握省移动业务支撑系统信息模型现状，形成省级系统对标研究成果，提升各省系统标准化程度，促进一体化的、全程全网的业务支撑体系建设和形成中国移动下一代业务支撑系统信息模型体系架构，增强支撑体系对外能力的开放性，对国际标准化组织提交标准化建议。形成半自动化和自动化测试手段，指导信息模型标准化的实施，保证在省级系统的有效落地，增强信息模型的架构管控能力。
云计算技术在业务支撑系统中的应用研究

承担单位：北京邮电大学计算机学院
课题负责人：鄂海红
课题组成员：鄂海红，宋美娜，欧中洪，于艳华，王晓晖，宋俊德，姜海鸥，刘进进，刘艳民，田鹏程，王金如，秦俊杰，邓江东
结题时间：2017年7月

该课题为教育部-中国移动科研基金“面向互联网的业务支持系统关键技术及方案研究”项目中的子课题（课题编号：MCM20123031）。

该课题的主要研究成果如下：
1. 针对中国移动资源池建设中资源池规模、类型差异及跨域管理挑战：完成了匹配业务支撑系统资源需求特征的虚机规格模板及虚机规划方法，设计了一种面向业务的两阶段资源调度算法，给出了跨业务域资源共享管理能力实现方案，定义了移动云资源池管理平台功能集及界面流程规范，实现了基于开源平台的原型系统及方案验证。
2. 针对中国移动业务支撑系统能力开放平台建设需求：设计了开放平台总体架构，研究了开放平台的流量控制机制，提出了增强 OAuth2.0 协议及安全管控方案，制定了业务能力接口规范，实现了能力开放平台门户原型系统。
3. 针对业务支撑能力对外开放的研究：撰写了互联网开放平台研究报告、国内外运营商开放平台研究报告各一份，开放平台规范的研究文档一份，关键技术研究报告三份，省级能力开放平台调研报告一份，参与撰写《中国移动能力开放平台能力开放与接入指南》企业规范，完成了能力开放平台门户原型系统一套。
4. 针对中国移动业务支撑系统的标准化需求：提出了一组有效的国际标准与企业规范的对标方法，完成了信息框架 SID 规范、业务流程框架 eTOM 规范与中国移动企业标准的对标分析，完成了国内外运营商在云存储等 IT 新技术的跟踪研究。

基于评价理论的多维情感语料库建设及其细粒度情感语义研究

研究单位：北京邮电大学人文学院
项目负责人：崔晓玲
项目组成员：崔晓玲，杨朝春，孙雁雁，史金金，李静，郭艳玲，张钫炜，苏嫚，吴梦雅，高天骄
结题时间：2017年9月

该项目为教育部人文社会科学研究项目（项目编号：14YJA740006）。

该项目主要研究内容如下：
1. 情感语料库建设：完成学术教学资源库（EAP）、媒体评论语料库两大模块资源库的建设。具体表现为：
 （1）学术书面语资源库主要收录了来自计算机科学与技术、电子、信息与通信、物理、经济管理、人文社科等各大学科来自 SCI 或 EI 收录的英文学术论文 200 篇；学术信件交流
类资源主要包括不同专业背景及年龄结构的求职者针对不同类型工作的申请信、推荐信及辞职信为例约 150 篇；

（2）学术口语资源库主要收录了包括涉及互联网、物联网、人工智能，移动通信等热门领域的 TED 讲演 50 篇，国际会议发言视频 30 个，访谈视频 50 个。

（3）媒体评论语料库主要收录了国内外政治、经济、军事、环境等多个领域的热门新闻评论 200 篇。该情感语料库作为观点表达为导向的公共研究生英语教学和研究奠定了坚实的基础。

2. 基于评价理论的细粒度情感标注：根据语料库中不同体裁的语篇特点，分别采用评价系统的不同子系统完成了不同体裁语篇的标注工作。具体表现为：

（1）已运用评价理论的介入系统，完成了针对英文学术论文言、文献综述和讨论部分内容的介入资源标注任务；

（2）同时也运用评价理论的态度系统完成对媒体评论语篇、演讲语篇、访谈语篇的系列标注任务。该研究为北京邮电大学公共研究生英语教学储备了一定规模的学术型和非学术型语篇样本，极大程度地提升了研究生英语教学的科学示范性和教学可操作性，同时完成了从目前研究生英语教学普遍注重学生客观信息表达力养成的传统英语教学模式逐渐转向为以主观信息表达力和学术/非学术观点协商性、对话性、传播性能力养成并重的教学模式。这对思辨型高端人才的养成具有重要的意义。

3. 基于评价理论的研究生英语教学任务模块的设置：完成基于评价理论的书面语和口语不同类型的系列教学模块任务的设置：如学术论文对话性分析、学术访谈的礼貌性和协商性分析、学术演讲的受众情感激发、演讲者观点建构、学术论文各部分以及学术求职信的语步分析等一系列分解式任务链的设置。在教学实践环节主要践行语言理论输入为先导、教师样本为基石、学生实践为终端的三位一体的教学模式。教师严格把关各项任务的输出形式，并且以每个任务为监控单元及时监控、反馈学生在课堂体验和课后反馈中出现的各种问题，并深入分析、及时总结学生在完成各项任务时出现的共性问题及其原因。通过半学年为一周期的教学观测发现，学生在接受任务型教学前后的语言产出能力已发生显著变化。即，学生已能从原始的英语语言自然习得过程，逐渐转变为开始有意识地关注不同类型、不同模态语篇的情感表达上的体裁差异性，灵活选择适宜的语篇结构化模型和观点协商策略，高效实现书面语和口语交际过程中的情感和观点的传播力度和效度。

4. 基于评价理论的学生情感语料样本库的建设：完成基于该项目的学生原创性论文和文献综述论文的任务分析样本库的建设。学生所分析的样本来自计算机科学与技术、电子、信息与通信、物理、经济管理、人文社科等多个学科，其分析对象均来自 SCI 或 EI 收录的英文学术论文。学生所分析的主要任务是对学术论文摘要、引言部分的语步分析和文献综述部分的介入系统分析。所分析的各类样本规模已达到 400 篇，其中包括优秀学生样本和问题样本两个层次。该设定可有效辅助教师教学过程，实现优秀学生样本的课堂示范作用。同时也能够针对学生在完成各项任务时容易出现的各类问题集中归类、深入剖析、及时总结原因，并在后续的教学环节集中反馈给学生，并有效指导其后期类似的语言实践活动。
基于网络的英语视听说教学多维评估体系研究

研究单位：北京邮电大学人文学院
项目负责人：卢志鸿
项目组成员：卢志鸿，李平，郑春萍，焦丽霞，栾琳，孙雁雁，韩凌，房印杰，陶晶
结题时间：2017年7月

该项目为教育部人文社会科学研究一般项目（项目编号：12YJA740052）。
该项目围绕基于网络的英语视听说课程教学多维评估体系的构建进行了一系列的全面、客观、科学、可操纵性的理论研究与实践探索，主要研究成果如下：

1. 借助多模态语言教学研究理论和语言测试相关理论，围绕基于形成性和终结性评价相结合的框架，依托本校技术优势，研发了支撑该项目研究内容的RoFALL英语语言技能训练系统，打造了自主学习英语平台，实现了个性化教学，有效训练了学生听说读写综合技能；使该系统成为学生训练英语综合技能的有效途径，教师教学与研究的得力助手，课程评估体系构建的有利帮手：RoFALL系统的主体教学设计理念与技术框架为技术团队承担教育部相关部门的考试平台研发打下了坚实基础和有效依据。

2. 借助RoFALL系统的教学应用构建了教师和学生双向的多元、交互、动态、多维的大学英语视听说教学评价体系，全面、客观、准确地衡量了英语视听说课程的教学效果：研制了该评估体系应用于教学实践的课程考核指标（见下表）及实施细则（如：口语活动测评标准）；自2012年以来已将其固化到本校大学英语课程设置的评估体系中。

情景英语视听说课程考核标准

<table>
<thead>
<tr>
<th>100分</th>
<th>期末考试 30%</th>
<th>期中考试 15%</th>
<th>平时成绩总评 55%</th>
</tr>
</thead>
<tbody>
<tr>
<td>自201209</td>
<td>基于1段视频的听力综合15%，归纳小结5%（5-m），个人陈述10%（1-m）</td>
<td>视听测试出勤5%</td>
<td>课堂表现20%</td>
</tr>
<tr>
<td>完全采用研发系统RoFALL在线考试</td>
<td>RoFALL网考教师记录</td>
<td>讨论、对话等活动</td>
<td>综合技能展示</td>
</tr>
</tbody>
</table>

3. 围绕基于网络和课堂的英语视听说课程教学模式下学生的学习评估、教师的教学评估以及实施和支撑该教学模式的网络环境评估，经过对情景英语视听说课程11个学期的所有教学评估材料的梳理，建立了学生学习过程记录文档和音视频文件库、教师的教学过程管理文档库、学生口语活动语料库；研究材料既有文本也有音视频数据，分门别类、完整成套，为今后进一步持续深化研究奠定了基础与保障。
企业财务呈报创新、扩散及资本市场效应研究

研究单位：北京邮电大学经济管理学院
项目负责人：高锦萍
项目组成员：高锦萍，万岩，何瑛，李晓荣，吴雨佳，陈宇，姚卓辰， 龙思，袁畅
结题时间：2017年4月

该项目为教育部人文社会科学研究规划基金项目（项目编号：13YJA790023）。

该项目主要研究内容如下：

1.基于XBRL的财务呈报创新及扩散研究：寻找限制我国XBRL财务呈报扩散的关键因素，进一步推进和完善政府及监管部门制定相关法规政策和激励政策。首先对XBRL财务呈报的扩散路径进行理论和模型分析。其次，基于TOE理论框架构建XBRL在企业内及组织间扩散的决定因素模型。然后，通过问卷调查获取数据，对XBRL财务呈报的扩散因素进行实证检验，寻找出目前限制XBRL在我国企业内和财务信息供应链上扩散的关键因素。最后，研究设计推动XBRL财务呈报扩散的政产学研网络型协同创新机制及创新模式。

2.XBRL财务呈报扩散对信息透明度的影响：通过构建信息透明度特征体系，采用实验研究和档案研究来检验XBRL财务呈报对信息透明度的改善，从而进一步丰富和完善信息透明度的相关理论和研究方法。首先，界定会计透明度的内涵，从信息生成、信息传递和交互层次确定会计透明度的衡量维度，设计了专家调查问卷，建立了会计透明度衡量指标体系。然后，从理论上分析了XBRL对会计透明度的影响。最后利用资本市场数据和设计实验，采用实证研究和实验研究方法进行检验。实证研究结果表明XBRL实施提高了会计透明度，但生成环节透明度的提高并未得到证实。实验结果表明XBRL实施提高了信息交互层次的信息透明度。

研究型大学的科研特色与定位

研究单位：北京邮电大学经济管理学院
项目负责人：吕廷杰
项目组成员：吕廷杰，谢雪梅，高艳苗，王勇，郭梦怡，艾博，赵语茜，董欣，郭帅兵
结题时间：2017年1月

该项目为教育部人文社会科学研究规划基金项目（项目编号：08JA880009）。
该项目的主要研究内容如下：
相比国外世界一流水平的大学，我国研究型大学仍有很大差距，存在着“科研地位低、科研活动类型定位不清晰、基础研究投入比例低”等问题，对此我国仍需不断改进现行的科研体制，克服制约我国科技事业和研究型大学发展的弊端。

通过文献综述对研究型大学的概念做出界定，并参考司托克斯象限理论，定性、定量分析方法，将我国研究型大学科研二维分类模式进行归纳、分析，总结出综合性、行业性、专业性三大类研究型大学的科研发展特色。

该项目借鉴国外发达国家研究型大学在国内科研体制中的作用，针对我国研究型大学的科研特色，提出相应合理的科研定位策略。

从原则上，研究型大学的科研定位必须符合国家科技发展纲要，基于其科研自身发展方向，遵循定位理论，并有助于其在国际科研竞争能力的提高；从定位设计上，我国研究型大学系统定位理论则存在整体性和联系性的特点，既要考虑国家科研体系整体的目标，又要考虑研究型大学和其他科研主体的分工与联系。

该项目主要研究方法：以26所高校为研究对象，进行实践调查，采用文献研究、定量与定性相结合、系统科学方法等对科研分类模式研究，在司托克斯二维分类模式基础上，对自然科学和人文社科划分为四个主体进行相应的模式研究，丰富了研究分类的视角，在研究方法上有所突破和创新。

该项目的主要研究结论：参考美日等发达国家研究型大学的科研发展特色，结合我国科研体系现状，对研究型大学的科研特色做出趋势分析，并总结其科研定位原则、设计思路等。最后从科研分类模式、科研经费投入、科研评价体系三个方面给出了我国对研究型大学科研发展的政策建议，为研究型大学科研发展方向提供了参考。

该项目主要创新点及突破：我国对研究型大学的科研分类采用“三分法”，该方法从根本上可以说仍是一维的分类方法。它将基础研究和应用研究分离开，实际上忽略了许多基础与应用研究融合在一起的研究。该文采用司托克斯象限理论二维分类模式，依据科研是否具有求知属性和应用属性，将其分列于一个二维图表中，四个象限分别称之为波尔、巴斯德、达尔文、爱迪生模型。

相比我国以往的科研分类模式，二维分类模式较好地将基础研究和应用研究融合在一起，丰富了科研分类的新视角，更能适应科学和社会进步的需要，促进科研综合实力的提升。且与发达国家普遍的科研分类模式相趋同，为中国研究型大学科研发展的改革与建议作出指导，有利于刺激我国研究型大学科研竞争力水平和自主创新能力的迅速提高。

语言模因论对非英语专业研究生

英语习得影响的探究

研究单位：北京邮电大学人文学院
项目负责人：刘琳琪
项目组成员：刘琳琪，郝劲梅
结题时间：2016 年 12 月

该项目为教育部人文社会科学研究青年基金项目（项目编号：13YJC740056）。
该项目主要研究和解释学生的语言习得现象，对学生“学”的过程和语言传播的过程进行微观、动态的描述，同时通过语言模因论，更好地提升学生的英语习得能力。该研究主要以本校非英语专业研究生为研究对象，分阶段，分等级开展研究，同时进行实验组和控制组
的分类，综合运用语言学，哲学，心理学和统计学等学科的相关理论，采用理论演绎，实证研究相结合的方法。

通过前期准备，收集整理语言模因论相关的文献和实践经验材料，为项目研究的顺利开展做准备；在中期实施阶段，采取问卷调查法，数据分析法和个案与案例研究法等，根据研究方案，进行广泛深入的教学实践和实证研究。在这个过程中特别注重项目研究的动态管理，围绕有效的语言模因论方法指导学生，认真分析、反思、交流；不断修正和完善实施方案。后期对项目实验研究进行科学的分析与归纳，汇集项目研究的相关成果，形成结题报告。

论文《流行文学作品中的语言模因研究》一文，结合非英语专业研究生的课内和课外阅读要求，以全新的视角研究流行文学作品中的语言模因，对于探究非英语专业研究生的言语交际和文学翻译提供了新思路，对于发挥其社会文化功用和语言进化有着特殊意义。在最新版的非英语专业硕士研究生英语教学要求中，特别强调培养学生的英语综合应用能力，使之成为能有效地以英语为工具进行交流的高素质人才。该文主要以阅读课为出发点进行延伸，通过语言模因发展的规律，为探讨流行文学作品的传播和提升学生鉴赏文学作品以及提取相应的语言模因，形成新的习得习惯提供了新的视角。

论文《文化信息流动与语言模因传播研究》一文，结合非英语专业研究生英语视听说课程，以及跨文化交流课程，观察了语言模因和文化信息的融合与变异，传播新特点等，探讨了其传播过程中的多元性，包容性，语义扩展性和开放性的新特点。语言模因无论是融合在习俗文化信息中，或是饮食文化信息中，或是旅游文化信息中，或是媒体文化信息中，或是其他形式的文化信息中，都充分说明了语言模因与文化的密切关系。更加说明只有结合文化知识来观察语言模因的表现，才能帮助学生更深刻地理解语言和恰当地运用语言，才能推动文化交往和文化传递。

从英语视听说课程和写作课程中引申的研究《言语交际中表达主体的话语形式在身份建构中的选择》和《角色参照语法下表达主体对话语形式结构的影响》两篇论文。一方面激发非英语专业研究生的个体情感和认知系统；另一方面充分地考虑和最大限度地刺激学生的学习动机，有效地发挥学习主体的主观能动性，充分发挥语言模因的传播优势。

语言模因的传播方式，在文学语境下的认知，以及文学修辞效应系统深入的探讨，对言语交际和文学翻译的研究提供了新思路，对于研究、揭示语言发展和演变规律以及语言模因在文化进化与社会发展中所发挥的作用有着重大的理论和实践价值。鉴于此，该项目的教学意义和社会意义重大。

北京市理工类高校实验教师队伍发展策略的研究

研究单位：北京邮电大学人文学院
项目负责人：范姣莲
项目组成员：范姣莲，达曼青，王海波，黄侃，郭莉，夏兰妮，陈华
结题时间：2017年7月

该项目为教育部人文社会科学研究专项任务项目（工程科技人才培养研究）（项目编号：14JDG010）。自立项以来，结合理论性研究和实践性研究，制定了详细的研究和实施方案。针对实验教师队伍现状，设计并发放调查问卷2套，以北京市22所理工科院校为调查对象进行实证调研，采集大量调研数据。对清华大学、北京工业大学等8所北京相关院校和3所实验室进
行走访调查，对张新祥、武晓峰等二十余位实验教学专家进行了实验教师队伍建设相关的访谈。多次组织参与理工类实验队伍的建设、实验教学高级论坛等队伍建设相关的学术活动，为实验队伍建设构建发展策略与制度的支撑体系，撰写完成北京地区理工类院校实验教师队伍的展研策略研究报告。主要研究成果如下：

1. 立足于对实验教师队伍全面系统的理论研究和深入翔实的数据支撑，围绕实验教师队伍的现状问题，提出有建设意义和实用价值的实验教师队伍建设策略、制度和方案。
2. 在全国学术期刊上发表论文2篇，其中CSSCI论文1篇。
3. 编写并出版《大学英语实验教程-阅读》(共三册)。
4. 构建大学英语实验教学评估体系，自主研发大学英语实验教学平台及其移动终端APP。

面向行业的校企协同创新培养工程博士机制研究

研究单位：北京邮电大学发展战略研究中心

项目负责人：王亚杰

项目组成员：王亚杰，陈岩，杨学成，田华，许桂南，刘志晗，李中华，周洪，唐一薇，肖彦

结题时间：2017年7月

该项目为教育部人文社会科学研究专项任务项目(工程科技人才培养研究)(项目编号：14JDG001)。

该课题基于协同创新视角，以我国工程博士培养中的校企合作机制为研究对象，重点采用文献研究、案例研究等方法，梳理工程博士培养中的基本理论、现状、及问题分析，重构工程博士定位的重要性，并基于部分发达国家校企协同培养工程博士的成功经验，提出有针对性的政策建议：第一，培养实践中应充分重视工程博士的定位问题，避免工程博士实际培养过程中的“趋同”、“矮化”现象；第二，应推动旨在促进工程博士校企协同培养的实体组织建设，如成立“工程博士协会”；第三，适时拟定“校企协培养工程博士计划”，从工程博士培养质量规制体系、评价体系、资助体系等多方面建立起一整套有利于工程博士培养良性发展的长效机制。

研究特别指出，作为工程专业学位的最高学位层次，工程博士的定位理应是：以工程实践为导向，工程绩效与前沿理论兼备，培养与学术型博士层次相同、类型不同、目标有别，质量评价标准侧重不同的创新型、精英化的专门人才。而实现这一培养目标的基本前提，就是与工业(产业、行业)需求的紧密结合。高水平行业特色型大学是培养高层次技术人才的重要力量，其与本行业的天然联系，相互信任，以及对本行业发展全面和深入的了解更有利于解决教育、科技、产业相互脱节的难题。高水平行业特色型大学长期以来与相应行业企业建立起来的“血肉”联系，使得工程博士的培养能够充分依托各行业协会和行业内龙头企业既有的有关工程师能力鉴定、认证、资格框架等基准规范，将人才培养的质量控制在较高的水平，也有利于工程博士培养的国际化衔接。因此，高水平行业特色型大学有能力将与行业企业的天然联系转化为培养方向一致、创新介质确定、情境关联有序的平台有机体，在高度细分与整合的质量约束机制下，实现工程博士人才培养质量和科学研究能力的同步提升。通过大协同、大循环、大交叉的集群创新，构筑工程博士培养高地。

以上研究结论对我国面向行业制定相关政策，推进校企协同创新培养工程博士具有重要的理论意义和实践价值。
无线电频谱资源经济价值和定价机制研究

研究单位：北京邮电大学经济管理学院
项目负责人：王琦
项目组成员：王琦，孙静，高菊月，孙雁，尚志华，孙筱雯
结题时间：2017年7月

该项目为工业和信息化部通信软科学研究项目（项目编号：2014-R-44）。

无线电频谱资源作为一种稀缺资源，现阶段供求矛盾日益突出，该项目通过梳理和总结各国无线电频谱有偿使用经验，结合我国的实际情况，科学合理地界定我国无线电频谱资源的经济价值，有效地理顺无线电频谱资源的定价机制，进而健全和完善无线电频谱资源定价体系，为我国频占费定价、频谱有效分配等管理环节提供支撑，提升我国频谱管理的科学性。

主要研究成果如下：
1.无线电频谱资源的经济价值的影响因素：根据无线电频谱资源的经济特性和ITU关于无线电频谱资源定价测评特性，结合相关研究文献，构建和确立无线电频谱资源的影响因素。关键结论：无线电频谱资源的经济价值主要由时间、地域和频率三个方面因素构成，并提出它们的具体测量指标。

2.无线电频谱资源的定价模型：首先分析和比较水资源、森林资源、矿产资源和土地资源的定价模型测量方法，然后分析无线电频谱资源采用基于成本定价模型、边际机会成本定价模型、实物期权定价模型、多元回归定价模型和行政激励定价模型的优劣势，最后，结合无线电频谱资源的特性，确立修正后行政激励定价模型为无线电频谱资源的定价模型，并采用900MHz频段进行实证分析。关键结论：确立无线电频谱资源的定价测算模型，并给出具体的实证分析。

3.无线电频谱资源的经济价值：根据多元线性回归、修正后的行政激励定价法和基准比较法等三种方法的特点，分别提取相关数据，分析700MHz频段无线电频谱资源的经济价值，并给出具体的价值区间，并和目前频谱资源占用费进行简要的比较。关键结论：采用多种方法测算无线电频谱资源的经济价值，并给出具体价值区间。

4.未来我国无线电频谱资源的需求分析：根据前三个的研究成果，重点分析了无线电频谱资源需求的驱动因素，在此基础上构建模型，预测无线电频谱资源的需求，同时结合边际机会成本理论，采用无差异曲线说明额外频谱资源相对于额外投资基站等方式带来的经济价值，最后，结合中国的实际情况，预测未来几年中国无线电频谱资源的需求。关键结论：构建了无线电频谱资源的需求模型，并采用实证分析预测未来几年我国无线电频谱资源的需求情况。

《我国无线电频谱资源市场化配置研究》第四部分

研究单位：北京邮电大学经济管理学院
项目负责人：吕廷杰
项目组成员：吕廷杰，王琦，陈霞，徐斯，孙晓雯，陈楠
结题时间：2017年6月

该项目为工业和信息化部通信软科学研究项目。
近年来，无线电频谱资源需求不断增长和无线电频谱资源相对稀缺的现实矛盾的不断凸显，迫切需要我们抓紧研究符合科学发展观的我国无线电频谱资源配置方式。该项目通过强调频谱资源市场化配置的必要性和迫切性，对频谱资源市场化配置的三种方式进行研究。分析招标、拍卖及交易的优缺点和可行性。确定我国未来的频谱资源采用拍卖的方式的趋势。对国外主流的拍卖方式进行详细分析，为我国的构建频谱拍卖方式提供借鉴。基于我国国情的基础上，构建出适合我国频谱拍卖机制，同时提出了未来我国频谱资源拍卖中可能出现的三种拍卖的模式。

在研究中发现，由于我国频谱资源拍卖处于困白期，频谱拍卖试点方案需要为建立频谱资源拍卖机制奠定基础。对于标的物的选择和设计，在频谱试点拍卖中，为了简化拍卖，使方案顺利进行，标的物不宜过多，最好采用单标的物，而且标的物的区域也不宜过大，推荐为某个或某几个省进行试点，这样防止因为标的物的起拍价与现有频占费相差过高而流拍。而在试点拍卖成功后，构建了成熟的拍卖机制后，频谱资源拍卖的标的物可以从单个变成多个；从试点拍卖中区域性牌照，发展到多个全国性的牌照，再发展至区域性牌照，不断的提高频谱资源的利用率。对于拍卖方式的选择，提出了三种情况下的拍卖方式，主要从单个标的物和多个标的物的情况下提出的。单个标的物适合于试点拍卖的情况。若是对移动通信的频谱资源进行拍卖，由于我国现有符合竞拍者资格仅仅只有 3 家运营商，在短期内开放通信市场比较困难，而且 3 家运营商的实力悬殊，存在一家独大的情况。除了采用区域性较小的牌照弱化实力优势之外，在拍卖方式的选择上选择密封多轮的拍卖方式，主要是防止共谋的出现和过多的信息暴露，而且对每一轮的价格增幅由政府规定，防止价格信息暴露而导致共谋。若对于没有过多条例限制的频谱资源而言，可以采用英荷混合拍卖的模式，该种模型的两个阶段分别可以促进有效的竞争，同样也在一定基础上防止赢者诅咒和共谋的产生，当然采用该种拍卖方式的前提为竞拍者数量比较多。

“互联网+”背景下，国内 P2P 网络借贷平台发展策略研究

项目承担单位：北京邮电大学
项目负责人：赵保国
项目组成员：赵保国，勾建康，阙人超，胡梓娴，姚瑶，赵昱
结题时间：2017 年 3 月

该项目首先对 P2P 网络借贷平台的概念进行简要介绍，总结了 P2P 的定义及特点，并按照融资渠道、有无担保、股东背景、公益性等 方面对 P2P 进行分类。随后对国外发达
国家P2P网贷行业的发展现状进行了简要分析，选取了较为有代表性的英国、美国以及日本三个国家，对这三个国家P2P网贷行业的发展现状、监管现状以及典型平台进行汇总分析。接下来，重点分析了我国P2P网贷行业发展现状、具体从我国P2P发展历程、我国P2P行业产业链、市场环境分析以及我国P2P市场发展趋势分析等五个方面进行系统地阐述。并对P2P用户的使用行为进行调研及进行相关实证研究，实证分析结果表明对投资者P2P网贷投资意愿，最大的影响因素是风险偏好和监管环境，其次按照影响程度由大到小分别为外界影响、对平台的信任、感知收益、风险管理能力、感知易用性。

最后提出了一些我国P2P网贷平台的发展策略，包括提升用户感知易用度、降低用户感知风险，具体措施为对借贷双方进行严格的信用审查、完善网贷平台的资金管理、健全网贷平台的信用评级制度、加强网络安全，保障平台及用户利益不受侵犯、加强平台信息披露机制，推动平台透明化运营；重视社会影响因素，加大政策的宣传力度；找准平台市场定位，实现差异化运营。该项目为我国P2P网络借贷行业的健康运作以及行业发展提供一定的指导作用，具有一定的理论意义和实践意义。

组织变革情况下通信运营商员工工作积极压力研究

承担单位：北京邮电大学
项目负责人：靳娟
项目组成员：靳娟，逯晨，郑霞，宁娟娟，张昕
结题时间：2017年3月

该项目为工业与信息化部通信软科学研究项目（项目编号：2016-R-30）。
该项目主要研究内容和主要观点如下：

1. 工作积极压力的结构维度：通过参考已有文献，并针对所有研究人群进行访谈、问卷方法等方法获取研究数据，并通过对所获取的有效数据进行分析，从6个维度提出工作积极压力的结构维度，即积极情绪、价值感、希望感、责任感、挑战期待、工作投入。

2. 组织变革类型与积极压力各结构维度的直接关系：通过回归分析得出以下结论：频繁变革与积极压力及其各维度有显著影响，且呈现负相关；计划变革与积极压力及其各维度也有显著影响，且呈现正相关；大规模变革与积极压力及其各维度呈现负相关。这说明，频繁变革导致员工无所适从，积极情绪、价值感、希望感、责任感、挑战期待和工作投入都会降低；计划变革使员工出现良好状态；大规模变革会触动员工的一些根本利益，积极情绪等都会降低。

3. 社会资本中介效应检验：社会资本及其网络规模与网络密度在组织变革类型与积极压力之间起着中介作用。这说明，当组织变革发生时，在亲朋好友的支持下，心理相对放松，会对其积极情绪、希望感、价值感、责任感、挑战期待和工作投入起到积极作用。当员工网络密度即人际互动频繁时，可以得到安慰、支持和帮助，起到积极作用。

4. 对策建议：在组织变革过程中，组织变革的领导应当通过实施有计划的变革，积极提供组织支持以及组织进行有针对性的培训来激发员工的积极压力。同时，在组织变革发生时，员工个人的社会资本是很重要的，面对压力源的承受，要积极构建自己的社会资本网络，在变革过程中，要积极寻求社会资本的原基础和保持，从积极角度看待变革，注意调整心态，把变革看成挑战，勇于面对。

该项目成果的科学价值：“
1. 从理论意义上讲，该研究针对现有研究的不足，对工作积极压力结构维度和组织变革情境下通信运营商员工工作积极压力的影响因素进行研究，拓展现有研究的视角和范围，一定程度上丰富了实证研究的成果。

2. 从实践意义上讲，一个组织要保持活力就必须变革，变革必将给组织内部成员带来积极和消极的压力。通过研究组织变革情境下通信运营商员工工作积极压力影响因素，并提出有效的促进积极压力的相应对策。促使员工支持组织变革，投身变革，对实现通信业的成功变革有一定的现实意义。

快速创意可视化工具与体感技术集成研究及示范

研究单位：北京邮电大学信息与通信工程学院
合作单位：北京递归科技有限公司，北京文睿创想信息咨询中心
项目负责人：魏芳
项目组成员：魏芳，黄华华，赵琛，李志伟，李辉，施迪，周萍，李然，张金山，魏福昂，王涛，高东旭，李萌，汪成峰，刘妍，张凯强，王雨，付金星
结题时间：2017年6月

该项目为文化部2011年度国家文化科技提升计划项目。

该项目以文化与科技结合为总体目标，以扩展传统文化传播的新形式为研究方向，研究快速创意可视化工具与体感技术的集成方法。该项目从人机交互、可视编程、技术交流和推广等多个方面的研究方法，解决该项目的易用型、普适性等方面的问题，实现先进技术转化。

许多国内原创游戏企业都在体感游戏方向上探索，因尚处于发展起步阶段，运作成本高，周期长，与国际开发水准差距较大。通过该项目的实施，屏蔽体感设备控制信号转换的复杂性，提高设备通用程度，可解决我国游戏产业中、小游戏企业在关键技术上困难，降低中小团队进入门槛，提高国产动漫游戏原创能力，满足公共性生产需求。

该项目采取“需求分析——模型设计——研究开发——应用示范”的技术路线，对体感技术的平台转移方案进行调研，主要研究成果如下：
1. 完成快速创意可视化工具一套。
2. 快速创意可视化工具满足支持微软Kinect的既定要求，并提供了相对应的体感动作映射配置工具。
3. 研制示范演示的体感游戏Demo一套。
4. 体感游戏Demo满足使用微软Kinect进行操控的既定要求，实现体感操控动作6个，超出既定任务目标。
5. 完成相关设计与说明文档《集成体感的快速创意可视化工具需求规格说明书》、《集成体感的快速创意可视化工具用户使用手册》和《游戏DEMO策划案》共3篇。
6. 中国软件测评中心系统测试报告1份。
量子密码协议设计的理论研究

研究单位：北京邮电大学计算机学院
课题负责人：陈秀波
课题组成员：陈秀波，徐 刚，窦 钊，徐淑奖，魏战红，李 婧，宿 愿，
李建强，康双勇
结题时间：2016年9月

该课题为“十二五”国家密码发展基金密码理论课题（课题编号：MMJ201401012）。
该课题主要内容如下：
1. 深入研究了经典密码协议在量子信息领域中的扩展与实现，包括：量子网络编码协议、
量子密钥管理协议、量子暗拍协议、量子信息隐藏协议。
2. 研究了量子信息领域内特有的部分量子密码协议，包括：量子安全通信协议、量子远程
制备协议、量子态共享协议。
3. 研究了量子通信方面的一些问题，即：基于量子力学特性，研究了无经典对应版本，
仅存在与量子信息领域内的量子密码问题，设计了两个量子安全通信协议，一个量子远程制
备协议和一个量子态共享协议。

基于软件定义网络的新型视频直播业务

研究单位：北京邮电大学信息与通信工程学院
项目负责人：刘 江
项目组成员：刘 江，张 娇，丁 健，胡文博，汪 硕，肖海洋，杨 激，
谢俊峰，张 晨，李 明，张 歌
结题时间：2017年3月

该项目为江苏省未来网络前瞻性研究项目（项目编号：BY2013095-4-18）。
该项目旨在构建一套完整的基于SDN的网络视频直播平台，使视频直播业务通过SDN
技术得到本质的性能提升。主要研究成果如下：
1. 面向视频直播的SDN网络状态感知技术：分发策略不仅需要判断完成数据包的视频
流标识，还需要对当前数据包所到达节点的网络状态进行感知。其中，网络状态感知具体分
为两部分：节点物理端口状态与视频流状态。节点的物理状态决定了网络所能承载的总容量，
视频流状态则决定了现有的分发路径是否合适。该成果利用软件定义网络中的可编程交换机
与开源北向交换机控制协议OpenFlow协议，设计了一种通用的端口状态与视频流状态检测
机制。该机制通过定期收集交换机的转发表和端口状态数据，定期对网络状态进行检测，达
到实时、快速、精确感知端口状态的目的。并且，集中式的控制器通过对视频流中特殊报文
字段的提取来确定视频流的播放状态，进而实现控制器对视频流状态的感知。
2. 基于网络状态的SDN视频流分发机制：直播传输中直播数据包在直播源和接收者之
间实现一对多的网络传输方式。当多个接收者请求接收直播源发送的直播视频数据包时，源
端需要同时发送多份相同的数据，然后路由器交换机根据数据的目的地址把数据发送给不同
的观看用户。该项目提出了基于网络状态的SDN视频流分发机制，通过聚合不同用户对同
一个直播业务的请求，从而缓解服务器压力，节约出口带宽，优化用户体验。该成果利用
SDN 集中管控的优势，基于对网络状态的观察，动态的调整数据包在网络中的分发路径和分发策略，并利用 SDN 交换机对数据包进行复制，有效的降低了网内冗余流量。该项目基于 SDN 仿真软件 Mininet 对提出的视频直播平台进行了完善的仿真评估；并且依托实验室先期构建的北邮 SDN 网络创新实验环境，搭建了视频直播原型系统。

网络服务行为智能分析能力研究及实验

研究单位：北京邮电大学信息与通信工程学院
项目负责人：崔鸿雁
项目组成员：崔鸿雁，李莉，孙礼，张利峰，柴源，张阔，李洋
朱亚博，姚远，王佳，孙芳芳，吴欲晓，殷晓龙，粘一龙，马晨航，刘晓飞，柴宏亮，Ahmed. M. R，赖巍，张雨晨，刘凯，袁亚光，徐帅，林宇，李林旭，刘硕，邱雪，李瑞冰，丁秋林，郑莉莉，武冠芳

结题时间：2017 年 3 月

该项目为江苏省未来网络前瞻性研究专项基金资助“未来网络创新环境的关键技术研究与实验验证”中的项目（项目编号：BY2013095-2-16）。

该项目主要对互联网中的用户行为和网络流量规律进行建模预测，基于用户使用数据业务的规律，探索新型互联网中的流量数据特征，研究相同以及不同网络业务数据之间数据的相互关系，以及寻找适合不同业务类型的统流量预测模型，整理出一套完整的面向海量数据的用户行为分析和网络流量建模系统。

该项目首先通过对真实网络中的流量数据进行相关预处理，将经过处理后的数据信息发送到网络数据分析系统，最终实现对数据的特征分析，用户行为建模和流量预测功能。主要研究内容和成果如下：

1. 海量网络数据存储处理分析系统构建：设计并实现了一个基于 Hadoop 的分布式数据处理系统，提高了数据处理的效率；提出了云计算系统 TSS（Task Scheduling Service）模型；提出了混沌蚁群算法，对常规蚁群算法易于陷入局部最优解的缺陷进行了优化。

2. 网络数据分类及业务特征分析理论研究：提出了一种自适应的聚类算法，使用分离度与聚合度相加得到极值的方式得到最适合的聚类类数；提出了高效的互联网数据业务特征挖掘方法，构建了针对业务和用户分类的模型；通过分析一个市的移动用户的上网记录流量分布特点，提出了新的分布—对数正态指数（LNE）分布；提出了自适应聚类算法来对一天所有的 SGSN 进行聚类分析，刻画出了不同地理区域的业务特点；通过带有时间戳的用户业务记录，提出了一套完整的方法论来全面地研究人类出行模式。

3. 网络流量预测及用户行为预测算法研究：提出了一种基于小波注入的最小复杂度回声状态网络（MCESN）预测模型；提出了一种通过生物侧抑制和交叉机制来改善神经网络神经元的丰富特性（DAMESN+LIM）；提出了一种基于 HCR（混合环形动态池）的回声状态网络架构，首次实现最低复杂度以及在保证预测精度的同时增加适应范围。

该项目组建设了云平台及虚拟化的试验床，并与全国南京未来网络试验床联调成功，作为覆盖 24 个城市的未来网络试验床的一部分。积极将项目研究成果应用在该试验床上进行了试验验证。同时，该项目目前积极将课题成果推广到通信、金融、交通等领域应用。
CCN 网络环境下新型 WEB 应用平台研发与实验验证

研究单位：北京邮电大学网络技术研究院
课题负责人：乔秀全
课题组成员：乔秀全，郭磊，南国顺，罗敏斌，陈静雯，王有凤，郭成，邓舒姗，丁伟
结题时间：2017 年 3 月

该课题为江苏省未来网络前瞻性研究项目“未来网络创新环境的关键技术研究与实验验证”中的子课题（课题编号：BY2013095-4-01）。

该课题以内容为中心网络（CCN）作为实验基础平台，主要研究并开发以内容/服务为主的网络化个人桌面、面向 CCN 网络的 Web 浏览器、面向 CCN 网络的 Web 服务器。目前国内外尚未研制内核层面支持 CCN 网络的 Web 浏览器以及 Web 应用服务器，该课题在国内外首次提出研发面向 CCN 网络的个人桌面，兼容 TCP/IP 网络的 Web 浏览器和 Web 应用服务器的研究。

该课题在内容中心网络的 Web 服务提供机制研究方面，提出并实现了基于内容中心网络的 Web 浏览器设计框架和原型系统 NDNBrowser 和 Web 服务器原型系统 CCNxTomcat，分别利用开源的 WebKit、Tomcat 以及 CCNx 原型系统，将内容中心网络的协议栈无缝集成到 WebKit 浏览器和 Web 服务器之中，NDNBrowser 和 CCNxTomcat 可以直接与内容中心网络进行数据交互，同时也支持基于 TCP/IP 网络的 HTTP 协议，所以，基于内容中心网络的浏览器和服务器可以支持 Web 服务从 TCP/IP 网络到内容中心网络的平滑迁移，在北邮创新实验平台的实际测试环境中将这两个系统进行了部署，其功能测试效果。同时，提出了一种内容中心网络中用户点击量统计服务机制，在理论分析的基础上，在北邮创新实验平台上开发并部署了未来网络服务门户，该服务运行在 CCNxTomcat 服务器上，用户可以通过 NDNBrowser 来访问内容中心网络上的创新服务。

该课题还在 CCN 网络中分别对 Web 浏览器和服务器的功能及性能进行了实际部署并测试，例如通过部署典型应用来测试功能，通过脚本模拟并发及压力测试来测试性能。

未来新一代移动通信网络自治管理机制研究与实验

研究单位：北京邮电大学信息与通信工程学院
课题负责人：梁栋
课题组成员：梁栋，彭木根，靳浩，闫实，薛文倩，王振东，陈东涌，张兆静
结题时间：2017 年 7 月

该课题为江苏省未来网络前瞻性研究项目子课题（课题编号：BY2013095-2-17）。该课题主要研究内容如下：
1.未来新一代移动通信网络 SON 应用场景研究。
2.未来新一代移动通信网络自配置技术研究。
3.未来新一代移动通信网络自优化技术研究。
4.SON 演示验证平台开发与 SON 技术在未来网中应用的研究。
该课题主要研究成果如下：
1. 研究了面向未来新一代移动通信网络的应用场景。
2. 面向未来新一代移动通信网络，提出了多目标多约束无线参数联合自配置方案。
3. 面向未来新一代移动通信网络，提出了多目标多约束多触发联合自优化方案，基于精准定位辅助增强的多目标多约束多触发联合自优化方案，基于大数据挖掘的业网协同多目标多约束网络自优化方案。
4. 基于软件无线电平台，搭建了一个面向未来新一代移动通信网络的 SON 功能演示验证平台和环境，基于该平台完成了自配置和自优化方案的功能验证；并且，还基于未来网的特点和优势，搭建了一个面向未来新一代移动通信网络的自配置和自优化仿真平台，基于该平台完成了项目中提出的自配置和自优化方案的性能验证；此外，对于如何将现有软件仿真平台，软件无线电演示验证平台和未来网络相融合做出了初步探索。

全球物联网时代的网络治理研究

研究单位：北京邮电大学经济管理学院
课题负责人：张彬
课题组成员：张彬，周宏仁，理查德·泰勒，珍妮弗·温特，谷宁，彭知岛，金知烨，顾达，赵磊
结题时间：2017年8月

该课题为国家互联网信息办公室专家委秘书处委托课题（课题编号：2016ZJWX08）。互联网的出现实现了全球信息的即时共享与交互，已经成为社会发展的重大推动力，网络和智能开始逐渐嵌入我们每日所需的物品之中，并持续监控和影响我们的日常生活。然而当今互联网的发展远超乎人们的想象，带来了许多前所未有的网络空间治理挑战，包括隐私、安全、消费者保护和数据管理等问题，在这样复杂的情形下，“全联网”这一新词汇应运而生。“全联网”（即The Internet of Everything），这一新的信息与网络环境具有普遍性、整合性及智能性等特点，由物联网、大数据、互联云/云计算和人工智能/智能系统四个部分组成。这些组成部分共同作用形成一个综合性的系统，统称为“全联网”。当前，“全联网”已成为全球关注焦点，互联网本身也面临巨大治理挑战。

经过课题组的共同努力，形成了《全球物联网时代的网络治理研究》研究报告、政策建议等成果。研究内容涉及嵌入式信息空间的治理，讲述了四大组成部分的作用及相互作用，说明其面临的挑战与主要特征，并研究具体的治理措施，研究嵌入式信息空间的网络空间治理，讲述了网络空间的结构、治理及治理规范，给出了有争议的治理模式框架：多利益攸关方主义、多边主义和分散的互联网；研究嵌入式信息空间的全球网络空间治理，对于机构和论坛相关的各种备选办法进行了比较，以及中国网络发展阶段分析，互联网治理与网络空间治理区分。全联网四个组成部分的各自特点、相互作用研究、专家问卷调查与意见探讨、典型国家治理模式的案例研究、美国专家 Richard Taylor 教授《嵌入式信息空间时代的全球网络空间治理研究-对美国影响》的报告解读等。

该课题采用了文献综述、案例分析和专家调研等研究方法。通过对文献综述法，分析对比全联网信息环境的各组成部分的主要特点和面临的挑战以及具体网络空间治理政策方法，通过案例分析法，对国际上的几个国家近年来对于互联网及网络空间治理的模式及具体政策进
行研究分析,引出我国对于网络空间治理政策的思考; 通过专家调研法，探讨了全联网框架、网络空间规则的最佳论坛以及多元治理的模式。

答辩过程中，研究成受到专家一致好评，认为该课题研究报告思路清晰，逻辑性较强，结构安排合理，涉及面广，结合国内外文献资料及发展趋势进行阐述，有充分的理论与实例支撑，研究成果整体上处于国际先先进水平，在政策建议方面有较新创性的见解，具有重大意义。同时将根据专家的意见继续跟踪研究，为全球网络治理研究做出更多贡献。

信息化和数字鸿沟现状与展望

研究单位：北京邮电大学经济管理学院
课题负责人：张彬
课题组成员：张彬，周宏仁，赵磊，彭知道，金知烨，胡茜，顾达
结题时间：2017年8月

该课题为国家互联网信息办公室专家委秘书处委托课题（课题编号：2016ZJWX09）。

当今世界，信息技术创新日新月异，以数字化、网络化、智能化为特征的信息化浪潮蓬勃兴起，没有信息化就没有现代化。信息化已经成为引领创新和驱动转型的先导力量。在此过程中，了解国际信息化发展及数字鸿沟情况，对比我国在国际信息化发展中的位置，以此来认清我国在信息化发展方面与发达国家的差距；同时对中国国内信息化水平进行评价，比较区域间信息化发展差异，认识我国的区域数字鸿沟现象，有利于了解中国信息化发展现状并发现问题，更有针对性的制定中国信息化发展以及弥合数字鸿沟的战略和策略。

该课题研究工作主要分为如下五个阶段进行：
1. 国际和国内信息化水平测度模型建立与优化；
2. 国际、国内全国信息化和数字鸿沟水平测度；
3. 国际、国内信息化水平差距的测度；
4. 国内各地区信息化发展趋势和发展模式分析；
5. 最终研究报告、政策建议等的撰写等。

根据项目要求，课题组从国际、国内角度研究信息化与数字鸿沟现象，国际研究中，涉及测度国际信息化现状、中国所处位置、中国信息化发展的优势及不足；对国内信息化研究中，分析了我国信息化发展现状，比较区域信息化发展差异，分析区域数字鸿沟现象并提出促进我国信息化发展和缩小数字鸿沟的政策建议。提交了《信息化与数字鸿沟现状与展望》报告、政策建议稿。

该课题综合利用了层次聚类、时间距离、灰色预测的方法：利用层次聚类方法对国际信息化对比及区域信息化比较进行了研究；利用时间距离中的公式法计算中国信息化指数要达到信息发达国家的水平所需时间，用来表示国家间信息化差异程度；使用灰色预测模型对国内信息化指数和数字鸿沟指数进行了预测分析。虽然这些方法早已存在，但是在研究方向上还没有人用这样的方法进行过论证，是此研究方法上重要的创新点。

答辩过程中，课题研究成果受到专家一致好评，认为该课题范围广、内容丰富，有深度，报告逻辑性较强，写作规范，将理论和实践结合起来研究。围绕涉及构建国际、国内信息化指标体系，国际、国内信息化发展水平的综合分析，以及国内的信息化发展趋势和发展模式分析。能够较为准确的反映我国信息化水平的现状，提供的政策建议结合实际，可操作性强，具有较强的利用价值。予以结题，同时本课题组也将根据专家提出的意见继续跟踪研究，了解我国信息化和数字鸿沟的发展现状，为我国信息化的发展贡献一份绵薄之力。
高校教师学生处理工作研究

研究单位：北京邮电大学人文学院
课题负责人：宋良刚
课题组成员：宋良刚，张钫炜，田风娟，赵玉来，张家宁，平淑丹，苏波
结题时间：2016年11月

该课题为中共北京市委教育工委、北京市教委委托课题。
近年来，教师、学生与普通高等学校（以下简称“高校”）之间的纠纷有所增加，表现的形式也多种多样。由于高校中缺少和解、调解、仲裁等适宜于平等主体之间法律纠纷的权利救济渠道，所以高校与教师、学生之间发生纠纷以后，一般只能通过申诉来进行，这在客观上加大了教育行政部门受理教师、学生申诉的压力。但高校与教师、学生之间的很多纠纷，不仅司法机关难以介入，而且教育行政部门有时也难以处理。上述问题需要尽快采取措施予以解决。该课题的研究目标是梳理、发现普通高校教师、学生申诉处理工作中的突出问题，将问题阐释清楚，并提出问题的解决方案，为依法治校、依法管理、科学管理提供一定的意见与建议。

基于此，该课题收集了国内关于教师、学生申诉制度及其实践的大量论文资料。在对相关文献进行分析、研究后，结果显示我国学界对教师、学生申诉制度所进行的研究主要集中在教师、学生申诉制度的界定、内容、存在的问题、完善该制度的建议与对策等四个方面。同时，我们也收集了一些实践的案例用于说明相关问题。在召开了专家论证会之后，我们又对课题报告的构思进行了调整，形成了课题大纲。我们主要从高校和省级教育行政部门对教师和学生进行管理与纪律处分的依据及主要情形、高校对教师及学生作出处分（处理）决定的程序、受理高校教师和学生申诉的范围及处理程序、常见问题等方面入手，通过理论论证和案例分析的方式对普通高校教师和学生申诉处理工作的程序、适用范围、问题等方面进行了阐述，并提出了解决问题的建议，完成了调研报告的写作。

就研究而言，我们取得了丰富、大量、真实的第一手资料，根据资料、数据分析与发现的问题，在此基础上提出课题组的针对性意见与建议，使研究报告更加具有现实性以及针对性。

北京市动漫游戏产业蓝皮书（2015）

研究单位：北京邮电大学网络文化研究中心
课题负责人：王文宏
课题组成员：王文宏，黄佩，万柳，刘剑，梁刚，马辉，郑晓慧，黄传武
结题时间：2015年9月

该课题为北京市文化局委托调研课题。
2014年，在现代科技和文化艺术高度融合、国家政策大力推动的背景下，北京动漫游戏产业实现了爆发性增长。与此同时，随着企业全产业链的打通，北京动漫游戏产业面临一系列重整，正迎来新一轮整合与转型的机遇。

2014年北京动漫游戏产业收入迎来爆发式增长，企业总产值已达372亿元，相比2013
京的 220 亿元，增长约 69%。其中，在北京动漫游戏产业中，99.5%的产值来自网络游戏产业。相比之下，动漫产业的产值较去年下降较大。2014 年，北京市网络游戏企业总产值约 370.2 亿元，约占全市动漫游戏产业总产值的 99.5%，约占全国游戏市场收入的 32.3%，较 2013 年 200 亿元增长了约 85%，呈现稳步发展态势。其中，移动游戏产值约 190 亿元，占比 51.3%，继续保持迅猛发展势头。

北京市动漫游戏产业蓝皮书（2016）

研究单位：北京邮电大学数字媒体与设计艺术学院
课题负责人：王文宏
课题组成员：王文宏，秘蓉新，黄佩，万柳，刘剑，梁刚，马辉，郑晓慧，黄传武
结题时间：2016 年 7 月

该课题在北京市文化局委托调研课题。

2015 年，北京市动漫游戏产业在优质 IP 井喷、“互联网+”思维和 VR 技术发展的影响下，现代科技与文化艺术高度融合，各领域均获得新的突破、发展和挑战。2015 年北京市动漫游戏产业总产值约 455 亿元，相比 2014 年的 372 亿元，增长约 22%。

2015 年北京市网络游戏企业总产值约为 446 亿元，约占全市动漫游戏产业总产值的 98%。2015 年北京市网络游戏总收入为 386 亿元，比 2014 年的 370.2 亿元增长约 4.3%。2015 年北京市以昆仑游戏、完美世界、智明星通为首的原创研发企业网络游戏出口金额约为 58 亿元人民币，与 2014 年的 42 亿元相比增长了约 38.1%。网络游戏产值稳步增长，移动游戏成为新兴力量；游戏出口产值猛增；渠道与内容并重，企业面临转型；VR 对游戏产业的影响开始变得全面而迅速。

2015 年北京动漫行业发展形势良好。2015 年，IP 改编强势入驻主流社会语境。文学、电影、游戏、动画等领域的优秀作品，互相之间转化，实现了用户、渠道、流量等的深度打通。原创漫画作为动漫产业链的首端，逐渐显现出了更深层次的价值。这两年，随着 IP 席卷文化产业，众多投资机构将目光瞄准了国产原创漫画，作为动漫行业内容的源头，漫画行
业迎来发展的时机。全国国产电视动画片在广电总局备案登记生产动画片 405 部，总量为 313693 分钟。其中北京企业生产（不包括央企）的动画片 28 部，总量为 29328 分钟，约占全国总量的 6.91%；央企生产的动画片共 7 部，总量为 4913 分钟，约占全国总量的 1.73%。

2015 年是国产动画电影元年，十月数码出品的动画电影《西游记之大圣归来》为国产动画电影票房新纪录。2015 年是中国动画产业的转折点，动漫产业开始逐步走向市场化、商业化、专业化。中国动画产业的发展也为其他相关产业带来了新的发展机会。

2015 年是动漫产业发展的关键一年。北京市动漫游戏企业从业人员约 2.5 万人，从业人员人数保持平稳增长。北京市高校教育招生人数保持稳定。动漫游戏培训机构也持续火热。2015 年北京市带动周边地区动漫游戏产业人才职称评定的先河，对架构健康的行业人才体系将起到推动作用。

北京市动漫游戏产业蓝皮书（2017）

研究单位：北京邮电大学网络文化研究中心 课题负责人：王文宏 课题组成员：王文宏，万柳，秘蓉新，黄佩，刘剑，刘胜枝，郑晓慧，黄传武

结题时间：2017 年 7 月

该课题为北京市文化局委托调研课题。

2016 年北京动漫游戏产业企业总产值约 521 亿元，相比 2015 年的 455 亿元，增长约 15%。2016 年北京市网络游戏企业总产值约为 505.63 亿元，约占全市动漫游戏产业总产值的 97%，约占全国游戏市场收入的 30.54%，较之 2015 年 446 亿元增长了约 13.37%。其中北京移动游戏企业 2016 年产值约为 355 亿元，占网络游戏总产值的 70.2%。约占全国移动游戏产值的 74%。智明星通、完美世界、畅游、掌趣、天神互动、金山、昆仑等上市企业产值达到约 257.73 亿元，约占北京游戏企业总产值的 49.1%。2016 年北京的动漫游戏企业出口金额持续增长，达到约 60.2 亿元。

2016 年全国国产电视动画片在广电总局备案登记生产动画片总量为 232135 分钟，其中北京企业生产（不包括央企）的动画片总量为 19208 分钟，约占全国总量的 8.3%；央视生产的动画片总量为 4749 分钟，约占全国总量的 0.2%，动画片总量与 2015 年相比有所下降。

漫画方面：2016 年互联网漫画业态崛起，国产动漫吸引了众多投资机构的目光。其中“快看漫画”的发展尤其引人关注。2016 年 4 月快看漫画用户总数突破 3000 万。2017 年年初，快看漫画宣布完成 2.5 亿元人民币 C 轮融资，融资完成后，快看漫画估值十几亿元人民币。2016 年 11 月，快看总用户数突破 6650 万用户。

动画方面：2016 年发展比较常态化，投资趋于理性，优质 IP 持续性得到体现。2016 年共有 15 家动画公司完成融资，以天使轮到 B 轮的早期融资轮为主，约有 20 家，占全国总量的 8.3%；2016 年共有 15 家动画公司完成融资，以天使轮到 C 轮的早期融资轮为主，约有 20 家，占全国总量的 8.3%。2016 年上半年，共有 15 家动画公司完成融资，以天使轮到 C 轮的早期融资轮为主，约有 20 家，占全国总量的 8.3%。2016 年上半年，共有 15 家动画公司完成融资，以天使轮到 C 轮的早期融资轮为主，约有 20 家，占全国总量的 8.3%。

游戏方面：网络游戏消费市场以及用户规模都在不断扩大，手游发展势头迅猛，已经成为行业主力军。另外，2016 年北京市以昆仑游戏、完美世界、智明星通为首的原创研发企业网络游戏出口金额约为 60.2 亿元人民币，原创移动游戏成为北京游戏出口中的新锐力量，乐动卓越、触控科技、掌趣、天神、蓝港互动等移动游戏企业出口金额均有较大增长。
人才方面：2016年北京市动漫游戏企业从业人员约2.8万人。产业从业人员流动性较大，人才需求呈现出多样化、精细化特征，人才培养模式呈现方向化、层次化特征。未来动漫游戏产业的人才教育将朝着“产学研一体化”的方向发展，区域性人才流动加快。

高校民族预科班会考改革和科学化管理研究
--高校民族预科班高等英语会考体系和实施方案研究

研究单位：北京邮电大学民族教育学院
课题负责人：托娅
课题组成员：托娅，杨京鹏，夏增艳，张耀忠，李俊，付慧琳，何杨，龙慧玲，李智远
结题时间：2016年 9 月

该课题为教育部民族教育发展中心合作课题（课题批准号：MJZXZH13012）。
该课题主要研究内容如下：
1. 组织参与完成的《普通高等学校少数民族本科预科英语教学大纲》已经于2015年12月通过民族司组织的英语学科专家评审，并由民族司发文公布，由全国各少数民族预科培养院校执行。见教民司函〔2016〕12号“教育部民族教育司关于印发普通高等学校少数民族本科预科5门学科教学大纲试行的通知”。
2. “会考调研问卷及摸底考试分析”在2014年10月重庆西南大学和2015年南昌工学院召开的《少数民族预科英语教学研讨会》上做主题发言，向来自全国各地预科培养院校的几十位一线教师、专家以及民族预科教学指导委员会做了汇报，得到积极评价和热烈反响。
3. 《普通高等学校少数民族本科预科英语会考考试大纲》的命题原则、考核内容和形式、试卷结构等在2015年6月举行的“普通高等学校少数民族本科预科英语会考”中得到较好体现。
4. 该课题负责人担任英语会考出题组组长，试卷设计过程中，与出题专家组各位成员同心协力，参考借鉴了大量前期研究成果，圆满完成了试卷设计任务，出题小组的严谨工作作风得到民族司领导和预科专业指导委员会的高度评价。
5. 完成《高校民族预科英语会考模拟试卷》十套，被2015年英语会考部分采纳。
6. 完成研究报告《高校民族预科班英语会考体系和实施方案研究》。

网络时代的科技论文快速共享研究

研究单位：北京邮电大学网络空间安全学院
课题负责人：张茹
课题组成员：张茹，刘建毅，许裔，翁芳雨，柴华，莫晓颜
结题时间：2016年12月

该课题为教育部科技发展中心网络时代的科技论文快速共享专项研究课题（课题编号：2013114）。
该课题设计实现一套依托数字水印、数字签名及插件开发技术的 PDF 文档版权保护方案，方便安全地保护在线发表论文的版权。主要研究成果如下：

1. 设计了一套 PDF 版权保护编辑软件：该软件实现 3 个功能：对 PDF 文件嵌入隐式版权标识的水印算法、能够对文件夹中 PDF 文件进行批量处理，方便使用、对 PDF 应用明水印技术。

2. 设计了用户端版权识别插件：此插件对 PDF 文档进行提取水印信息，进而判断此 PDF 的版权归属，是否属于“中国科技论文在线”。

3. 设计了用户端防篡改插件：利用插件技术，禁止对 PDF 文件进行修改。

基于 IPv6 的行业物联网支撑技术产品研发及示范应用

承担单位：东信和平科技股份有限公司
合作单位：北京邮电大学，北京交通大学，中国移动通信集团广东有限公司珠海分公司
项目负责人：黄小鹏 (东信和平科技股份有限公司)
北邮课题负责人：辛 阳
北邮课题组成员：辛 阳，朱洪亮，罗守山
结题时间：2017 年 10 月

该项目为珠海市科技计划项目（项目编号：2010B0500102023）。

北京邮电大学课题组负责该项目中的 IPv6/IPv4 双协议栈、IPv6 多跳自适应组网技术、IPv6 网络鉴权技术和 IPv6 安全传输技术等开发工作。

该项目利用 M2M 模块技术和 IPv6 传感路由器的物联网支撑技术，研发适用于制造和服务业的双模传感器节点、IPv6 无线/移动路由器、行业物联网应用基础平台产品，以移动网络为传输载体，为客户提供 M2M 的信息传递，实现生产过程监控、指挥调度、远程数据采集诊断、生产环境监测、企业仓储安防和销售物流等行业应用。主要研究成果如下：

基于 IPv6 的 M2M 是现阶段物联网最普遍的应用形式，M2M 技术作为物联网的“探路者”可以在多个领域实战，包括速递服务业、交通物流业、电力监控等领域。该项目开发的 M2M 技术物联网综合解决方案，为制造业和服务业物理网需求提供从传感接入到无线接入或有线传输再到业务平台展现与应用支撑的一整套完整解决方案，协助客户实现随时随地的物联网工作与生活体验，极大地带动珠海市及广东省物联网产业的发展，同时该项目关键技术的突破可以促进 M2M 技术水平的升级，带动整个物联网产业的发展。

该项目的产业化实施极大地促进企业的做大、做强，同时产生联动作用，对发展地方经济和调整产业结构意义重大，对相关联行业的电动汽车企业、电池材料企业的发展也能产生积极影响。
噪声信道下的量子密码研究

研究单位：北京邮电大学网络技术研究院
项目负责人：秦素娟
项目组成员：秦素娟，温巧燕，黄伟，张可佳，张伟伟，王玉坤
结题时间：2017年10月

该项目为综合业务网国家重点实验室开放基金项目。
该项目主要研究噪声等非理想情况对量子密码协议的影响，寻找抵抗噪声的方法，设计非理想情况下的量子密码协议，分析协议的安全性。主要研究成果包括：研究了不同噪声信道中协议的设计方法，设计了可以抵抗集体噪声的量子密钥分配、量子保密比较、量子秘密共享、量子密钥协商等协议；研究了非理想情况下半设备无关量子随机数扩展协议的安全性，证明了在放松维数假设时半设备无关量子随机数扩展协议不安全；分析并设计了多种新颖的量子密码协议，如量子多方排序协议、基于测量基编码的量子密钥分配协议等。

TD-LTE-Advanced TTCN 终端协议仿真

研究单位：北京邮电大学
合作单位：北京星河亮点技术股份有限公司，工业和信息化部电信传输研究所，西安邮电大学
项目负责人：唐晓晟
项目组成员：唐晓晟，宫宇，张倩，庞飞，邓静，刘翔飞，刘诗章，申超，张映霓，谢腾，陈玲，刘汶，申超，张菲菲，孙红恩，陈通，尹增勇
结题时间：2017年11月

该项目为中关村开放实验室专项资金补贴项目。
TD-LTE-Advanced TTCN 终端协议仿真测试仪全面支持 TD-LTE 和 TD-LTE-Advanced 中物理层功能和增强特性，全面支持协议实体功能和 L3 信令交互，单表可模拟多小区，并支持与其它仪表级联搭建复杂多系统环境。协议仿真测试仪还可提供开放的开发接口和测试样例，提供完备的测试信息分析功能，支持业务测试和卡接口测试，对 TD-LTE-Advanced 芯片及终端的协议测试提供了不可或缺的支持，确保了 TD-LTE-Advanced 产业链的完整。

TD-LTE-Advanced TTCN 终端协议仿真测试仪全面支持指南中的考核指标要求，完全实现了 TD-LTE-Advanced 物理层增强特性和协议实体功能，提供了完备测试信息分析功能。研究成果 TD-LTE-Advanced 协议仿真测试仪可模拟 TD-LTE/LTE-Advanced 小区，可独立完成 TD-LTE/LTE-Advanced 单小区、双小区协议一致性能测试用例并给出判决结果，也可级联 TD-SCDMA、WCDMA、GSM 系统模拟器，完成系统间测试用例并给出判决结果。同时，协议仿真测试仪还可与其他设备一起搭建业务测试系统和卡接口一致性测试系统能力。

研究成果 TD-LTE-Advanced 协议仿真测试仪的控制界面，运行在管理计算机中，实现对 TTCN 测试用例的加载和运行管理，同时实现 Log UI 输出、终端的自动开关机控制等，为仪表开发维护阶段的测试工作和最终用户的使用带来极大的便利，对测试过程中的 log、运行数据进行获取、分析、保存，通过合理的数据分析手段实现对测试过程的自动化判决。
唐山市依托电子政务全面建设权力运行电子监控体系

研究单位：北京邮电大学信息与通信工程学院
项目负责人：张 阔
项目组成人员：张 阔，蔺志青，张 彬，吴 铭，王宇宁，易 做，刘 佳，张 晗，邢仕样，杨春雨，曾 洋，胡文韬，郭瑞兴，谢艺聪，冯嘉美
结题时间：2017年1月

该项目为一般纵向项目。
该项目已经完成并已经上线，运行良好。
该系统包含多个模块，可支撑唐山市民日常办件需要。主要包含以下几个模块：办件办理（承诺件、即办件等）、网上预约、网上投诉。通过对业务与岗位角色进行分析，系统对业务模型进行抽象，总结出办理岗、审批岗等角色，以及办理、审批、办结等步骤。在实际使用中，该业务模型能够满足日常的办公需求。同时，在办件的流转中，该项目为系统设计了一套可用的工作流机制，该工作流机制可以根据办件的状态进行操作，方便办件的管理与使用。对于办公人员的操作，系统也十分友好。

该项目采用业界广泛采用的J2EE技术（Spring、Hibernate、JSP、SQL Server等）。Spring致力于J2EE应用的各层的解决方案，而不是仅仅专注于某一层的方案。可以说Spring是企业应用开发的“一站式”选择，并贯穿表现层、业务层及持久层。Hibernate是一个开放源代码的对象关系映射框架，它对JDBC进行了非常轻量级的对象封装，它将POJO与数据库表建立映射关系，是一个全自动的orm框架，hibernate可以自动生成SQL语句，自动执行，使得Java程序员可以随心所欲的使用对象编程思维来操纵数据库。SQL Server是微软公司推出的关系型数据库管理系统。具有使用方便可伸缩性好与相关软件集成程度高等优点，可跨越从运行Windows 98的电脑到运行Windows 2012的大型多处理器的服务器等多种平台使用。该项目运行于Weblogic应用服务器上。这套架构经过业界的检验，同时，对系统进行了完备的压力测试，该套架构能够保障该系统的正常运行，同时可以抵御较大高峰的访问。

该项目通过在唐山市政府及所辖的十六个县市区的实际使用检验，取得了良好的成绩。目前该系统每年处理办件在4万件左右，达到了预期的设计目标。

舆情分析报告

研究单位：北京邮电大学经济管理学院
项目负责人：吕 亮
项目组成人员：吕 亮，邹 玲，邵 鑫，杨慧敏，梁利鹏，郝文俊，蒋 婉，龚文军，林海霞，肖 越，吕文韬，李梦阳
结题时间：2017年10月

该项目为一般横向项目。
近期热点网络舆论情况 根据新浪微博数据中心平台中“微数据”“微报告”和“微指数”等提供的相关数据，通过对2015年每月排行前二十的微博热点话题依据话题阅读数、讨论数和讨论人数的维度进行排序，经过汇总、分类和分析，我们发现：综艺节目、电视剧、
明星、体育等娱乐话题受关注度最高；一些社会突发事件、国家政策活动、国际问题、名人事件等相关话题也受到社会广泛关注和热议。以下是部分热点话题具体的相关事件概述和舆情综述。

1. 社会安全突发事件引发负面舆论：天津港“8.12”特大爆炸事故、“东方之星”长江沉船事故、上海踩踏事件、南京宝马撞人案、哈尔滨大火事件等突发事件的有关信息，在微博上迅速传播，短时间内成为热点话题，引发社会各界热议。在一些突发事件中，相关部门和地方政府的舆论公关表现比较被动，某些不法分子造谣生事，煽动舆论，造成了恶劣的社会影响。在2015年黑龙江庆安县火车站枪击案中，地方政府的处置和舆情应对不及时、不妥当，官员通过借助微博等新媒体引导正确舆论导向的能力仍然落后。

2. 国家新政策及活动受到热烈拥护：依法治国、李克强总理敦促各部委简政放权、纪念中国人民抗日战争暨世界反法西斯战争胜利70周年大阅兵、国家主席习近平对美进行国事访问、党中央重拳反腐、一带一路、亚投行等政治话题受到热议。其中，关于依法治国、重拳反腐的话题受到的关注度最高，持续性最强，反映了社会各界对腐败问题的深恶痛疾。“老虎苍蝇一起打”、“八项规定”等反腐思想的传播，中纪委对贪腐案件的持续处理，极大鼓舞了人民群众对中央政府的信赖和支持，也促使各界积极讨论反腐政策，为中央反腐出谋划策，同时对干部队伍起到了一定警示和警戒的积极作用。

3. 国际外交活动获得高度支持：近年来，国际问题越来越受到社会各界的关注和评论。朝鲜半岛无核化、TPP(跨太平洋伙伴关系协议)成为中国2001年加入WTO后面临的新挑战，中俄、中美新型的大国关系、中日关系、南海问题等，受到相关领域人士的热切关注。随着中国经济的迅速发展和国际地缘的日益提升，人民群众有普遍的民族自豪感和强烈的爱国主义精神。但依然存在部分崇洋媚外、主张西化的舆论力量。在国际舆论场中，中国政府已经站在世界舞台的核心位置，如何有效利用话语权讲好“中国故事”、传播中国文化，事关中国的国际形象塑造和软实力的提升。

4. 社会名人事件激起广泛热议：毕福剑不当言论视频、众多明星吸毒、富二代炫富、任志强违背党员立场言论等敏感话题受到不少人的强烈关注。其中，任志强在互联网上大放厥词，发布不符合党员身份的反动言论，造成了非常恶劣的社会影响。政府当前需要对民意表达进行正确的舆论引导，在开放的互联网空间，既要承认意识形态的多元化，又要通过法律对互联网上的舆论进行约束，宣传好共产主义理想和现行政策的关系，让权利在阳光下运行，使得人民群众更加信赖政府的政策和管理。

网络名人影响力发展趋势报告

研究单位：北京邮电大学经济管理学院

项目负责人：吕 亮

项目组成：吕 亮，邹 玲，邵 鑫，杨慧敏，梁利鹏，郝文俊，蒋 娟，龚文军，林海霞，肖 越，吕文韬，李梦阳

结题时间：2017 年 10 月

该项目为一般纵向项目。

该项目主要研究内容如下：

1. 网络名人信息库：千人信息库中的网络名人主要包括关心时政和教育的大学著名学者，关注社会民生的人大代表，言辞犀利的中央电视台主持人，新浪微博中有意见领袖作用的政府官员，法律专家，微博风云榜中政务、社会、军事标签下的热门人物等。并根据六度分割
理论，借鉴微博推荐系统，对样本进行了丰富和完善。

该项目研究的千人信息库包含微博名人的基础信息、网络社交信息以及网络行为概述三部分。基础信息指姓名、性别、国籍、出生年月、出生地、党派、毕业学校等等。按照工作单位官网，百科信息（百度、维基、互动），个人微博等信息的优先次序摘取相关信息。此外，不同的搜索引擎获取结果也被用于作为核查信息准确性的手段。网络社交信息指微博、博客、其他个人主页相关的动态客观信息。搜集主要从社交网站直接或间接搜索得到。网络行为概述包含网络行为总结和立场细分。网络行为总结是微博内容的具体观点、爱好、思想的概述，反映了网络名人在其关注领域的意见和对社会时事热点的态度。并将名人的立场分为五个类别，中立、偏左温和、偏左、偏右温和、偏右。通过分析1,500名网络名人的信息库，对网络名人的基本属性进行统计分析，并得出初步的统计结果。分析主要从年龄、民族、党派、毕业学校、省份、身份、关注领域、粉丝量级以及微博发文数量等9个维度进行。

2. 近期热点网络舆情情况：根据新浪微博数据中心平台中“微数据”、“微龄报告”和“微指数”等提供的相关数据，通过对2015年每月排行前二十的微博热点话题依照话题阅读数、讨论数和讨论人数的维度进行排序，经过汇总、分类和分析，我们发现：综艺节目、电视剧、明星、体育等娱乐话题受关注度最高；一些社会突发事件、国家政策活动、国际问题、名人事件等相关话题也受到社会广泛关注和热议。以下是部分热点话题具体的相关事件概述和舆情综述。

3. 网络名人微博传播规律探究：对千人信息库各领域的微博名人进行分层抽样，根据各领域人数在千人信息库中的占比确定各个领域的样本数（N），选择各身份类型粉丝数量前N的微博名人作为重点研究对象，保证样本的代表性。抽取的最终样本中占比前三的分别是学者、党政机关工作人员、教授。

我们将微博的影响力作为评价一条微博带来的影响程度，其主要受到以下几个因素的影响，我们将对以下几个指标进行详细的描述和研究。

影响力=情感取向*持续时长*参与度*传播深度*粉丝质量

4. 恶性微博产生的原因及治理办法：从抽取的样本数据来看，负向的言论所占的比例很小，但是这部分言论仍然值得关注。我国当前处于国际社会认为的社会矛盾敏感时期，在信息时代，这类敏感的社会矛盾因公民权利意识的提高容易诱发群体事件。由于群体事件的聚集性会导致个体心理情绪的变化，个体会丧失理智和责任感，表现出冲动而具有攻击性的过激行为。体现在微博上就是情绪化和易受操控化。

政府及相关职能部门应全面掌控最新舆情，并通过传播媒介引导群众舆论；及时调查、上报处理涉及面广且公众意见较大的问题，这是系统有效治理群体性事件的关键所在；一旦出现危机敏感信息，应立即向舆情治理部门提出预警，采取积极措施及时快速的应对群体性事件。

对于恶性微博的治理：一方面要借用政策的监管手段，另一方面也要利用微博自身的传播规律予以疏导。
广东省新一代宽带无线移动通信产业发展“十二五”实施方案编制研究

研究单位：北京邮电大学信息与通信工程学院
项目负责人：李书芳
项目组成成员：李书芳，尹斯星，洪卫军
结题时间：2017年6月

该项目为一般纵向项目（项目编号：GPCGD103105FD201F）。

新一代宽带无线移动通信也是《国家中长期科学和技术发展规划纲要（2006-2020年）》重点实施的科技重大专项之一，为加快培育和发展广东省新一代宽带无线移动通信产业发展，落实国家重大战略部署，加快经济发展方式转变，该项目编制《广东省新一代宽带无线移动通信产业发展“十二五”实施方案》作为推动广东省新一代宽带无线移动通信产业科学发展的重要指导文件。

该《实施方案》围绕“新一代宽带无线移动通信网”中的重点内容：LTE及LTE-Advanced研发和产业化、移动互联网及业务应用研发和物联网及泛在网。该《实施方案》以培育发展“新一代宽带无线移动通信产业”，推动产业结构战略性调整、加快转变经济发展方式为主线，遵循科技创新、协调发展、政府引导、多方共赢的基本原则，从产业发展现状和趋势入手，指出了LTE和LTE-Advanced产业核心技术与知识产权不足、物联网处于“孤岛”运营阶段等问题，从通信设备制造、通信芯片、仪器仪表、移动终端、通信运营、集成服务以及等方面部署了产业发展目标，并提出了完善设备制造产业体系、做强移动终端产业、推进系统集成及通信服务发展等发展战略，结合新一代宽带无线移动通信网专项特点。

产业布局方面，该《实施方案》建议以深圳和广州高新技术产业集聚区为核心，以国家级、省级高新区和多个国家级高新技术产业集聚区为载体，建设我国乃至世界重要的新一代宽带无线移动通信产业高地，形成以广州、深圳为中心，东莞、佛山、珠海、中山、惠州、河源、汕尾为配套的珠三角国家宽带通信产业聚集区，带动上下游消费电子等产业联动的布局。同时，该《实施方案》分别从核心竞争力提升工程、新型服务产业融合优化工程、产业布局优化工程、知识产权和标准国际化工程、产业可持续发展工程等方面对产业重点工程进行了阐述，并提出了加强组织与机制保障、加大科技资金扶持力度、深化人才培养和输送机制、加强国际交流与合作等保障措施。
其它结题科技成果一览表

<table>
<thead>
<tr>
<th>序号</th>
<th>项目类别</th>
<th>项目名称</th>
<th>项目负责人</th>
<th>项目组成员</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>教育部人文社会科学研究一般项目（项目批准号： 11YJA630109）</td>
<td>西部及欠发达地区微型企业生存发展边界研究</td>
<td>孙启明</td>
<td>孙启明，王娜，刘宇，郑欣，王明鹏，陈花，韦结余</td>
</tr>
<tr>
<td>2</td>
<td>一般纵向项目</td>
<td>中国总会计师队伍文化建设研究</td>
<td>傅四保</td>
<td>傅四保，孙建敏，谭明，阮剑慧，宁佳男，冯炳僖</td>
</tr>
<tr>
<td>3</td>
<td>北京市文化局课题</td>
<td>北京市动漫产业发展现状与走向研究</td>
<td>王文宏</td>
<td>王文宏，万柳，梁刚，黄佩，刘胜枝</td>
</tr>
<tr>
<td>4</td>
<td>北京邮电大学社会科学基金项目</td>
<td>语言模因视阈下的言语交际研究</td>
<td>刘琳琪</td>
<td>刘琳琪</td>
</tr>
<tr>
<td>5</td>
<td>北京邮电大学社会科学基金项目</td>
<td>北京市网络游戏的跨文化内容构建与传播</td>
<td>黄佩</td>
<td>黄佩，万柳，陈甜甜，林佩瑶</td>
</tr>
<tr>
<td>6</td>
<td>北京邮电大学社会科学基金项目</td>
<td>移动传播中的身份构建与认同</td>
<td>黄佩</td>
<td>黄佩，梁刚，王梦瑶，王琳，王晓君</td>
</tr>
<tr>
<td>7</td>
<td>北京邮电大学社会科学基金项目</td>
<td>大学英语实验教学体系的设计研究</td>
<td>范娇莲</td>
<td>范娇莲，陈华，王海波，刘爱军，达曼青，张铁伟</td>
</tr>
<tr>
<td>8</td>
<td>北京邮电大学社会科学基金项目</td>
<td>语言要素在不同学习群体教学中的目标定位及相关研究</td>
<td>卢志鸿</td>
<td>卢志鸿，孙雁雁，程立，杨慧</td>
</tr>
<tr>
<td>9</td>
<td>北京邮电大学社会科学基金项目</td>
<td>汉语新闻评论的情感研究</td>
<td>崔晓玲</td>
<td>崔晓玲，苏红，吴梦雅，高天骄，明斐卿，谢仲娜，黄明策，郑重</td>
</tr>
<tr>
<td>10</td>
<td>北京邮电大学社会科学基金项目</td>
<td>复杂哲学视域下的微博用户群体行为研究</td>
<td>赵玲</td>
<td>赵玲，张静，潘文富，齐英艳，杨瑞萍，李全喜</td>
</tr>
<tr>
<td>11</td>
<td>北京邮电大学社会科学基金项目</td>
<td>青少年移动互联网使用行为及其影响研究</td>
<td>刘胜枝</td>
<td>刘胜枝，蒋淑媛，张小凡，董丹丹，徐婷</td>
</tr>
<tr>
<td>12</td>
<td>北京邮电大学社会科学基金项目</td>
<td>北京理工类高校实验教师队伍建设与发展策略研究</td>
<td>范姣莲</td>
<td>范姣莲，达曼青，王海波，陈华，张瑞妮，魏元喜，张劭然</td>
</tr>
<tr>
<td>序号</td>
<td>课题类别</td>
<td>课题名称</td>
<td>二级单位</td>
<td>课题负责人</td>
</tr>
<tr>
<td>-----</td>
<td>-----------</td>
<td>--</td>
<td>----------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>人才培育项目</td>
<td>基于无线链路特征的物理层安全技术研究</td>
<td>感知技术与产业化研究院</td>
<td>刘伟</td>
</tr>
<tr>
<td>2</td>
<td>人才培育项目</td>
<td>微信折射出的当代社会思潮研究</td>
<td>经济管理学院</td>
<td>张静</td>
</tr>
<tr>
<td>3</td>
<td>人才培育项目</td>
<td>外部融资偏好与盈余管理关系研究，来自中国上市公司的数据</td>
<td>经济管理学院</td>
<td>张宇扬</td>
</tr>
<tr>
<td>4</td>
<td>人才培育项目</td>
<td>基于渐进式检索的车牌超分辨率重建技术研究</td>
<td>计算机学院</td>
<td>刘武</td>
</tr>
<tr>
<td>5</td>
<td>人才培育项目</td>
<td>少数民族学生混合式英语教学资源库建设</td>
<td>民族教育学院</td>
<td>李智远</td>
</tr>
<tr>
<td>6</td>
<td>人才培育项目</td>
<td>窄带分布反馈式中红外光纤激光器的研究</td>
<td>民族教育学院</td>
<td>段子文</td>
</tr>
<tr>
<td>7</td>
<td>人才培育项目</td>
<td>基于运动机能的笔式自然交互研究与应用</td>
<td>数字媒体与设计艺术学院</td>
<td>吕菲</td>
</tr>
<tr>
<td>8</td>
<td>人才培育项目</td>
<td>分布式高效图像识别算法研究</td>
<td>数字媒体与设计艺术学院</td>
<td>柳杨</td>
</tr>
<tr>
<td>9</td>
<td>人才培育项目</td>
<td>全媒体时代类型影视的文化研究</td>
<td>数字媒体与设计艺术学院</td>
<td>刘剑</td>
</tr>
<tr>
<td>10</td>
<td>人才培育项目</td>
<td>北京市大学新生英语语用惯例语能力研究</td>
<td>人文学院</td>
<td>苑仁庆</td>
</tr>
<tr>
<td>11</td>
<td>人才培育项目</td>
<td>魏晋南北朝赋“青”范畴颜色词语义研究</td>
<td>人文学院</td>
<td>郝静芳</td>
</tr>
<tr>
<td>12</td>
<td>人才培育项目</td>
<td>多采样率系统自适应预览控制的进一步研究</td>
<td>自动化学院</td>
<td>王迪</td>
</tr>
<tr>
<td>13</td>
<td>人才培育项目</td>
<td>基于傅氏级数和优化法的可调连杆机构轨迹生成综合研究</td>
<td>自动化学院</td>
<td>张英</td>
</tr>
<tr>
<td>14</td>
<td>人才培育项目</td>
<td>功能材料的光电性能设计及器件应用的后续研究</td>
<td>理学院</td>
<td>屈贺如歌</td>
</tr>
<tr>
<td>15</td>
<td>人才培育项目</td>
<td>光控涡旋波接收技术研究与应用探索研究</td>
<td>理学院</td>
<td>高欣磊</td>
</tr>
<tr>
<td>16</td>
<td>人才培育项目</td>
<td>超 Nyquist 速率激光通信技术研究</td>
<td>光电信息学院(信息光子学与光通信研究院)</td>
<td>高冠军</td>
</tr>
<tr>
<td>序号</td>
<td>课题类别</td>
<td>课题名称</td>
<td>二级单位</td>
<td>课题负责人</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>17</td>
<td>人才培育项目</td>
<td>线性无源全光二极管研究</td>
<td>光电信息学院 (信息光子学与光通信研究院)</td>
<td>叶寒</td>
</tr>
<tr>
<td>18</td>
<td>人才培育项目</td>
<td>网络空间关键节点发现技术研究</td>
<td>网络技术研究院</td>
<td>张沛</td>
</tr>
<tr>
<td>19</td>
<td>人才培育项目</td>
<td>面向区域化数据采集的电力应急通信与组网技术研究</td>
<td>网络技术研究院</td>
<td>郭少勇</td>
</tr>
<tr>
<td>20</td>
<td>人才培育项目</td>
<td>SaaS服务可靠性保障方法研究</td>
<td>网络技术研究院</td>
<td>周傲</td>
</tr>
<tr>
<td>21</td>
<td>人才培育项目</td>
<td>基于深度卷积神经网络的地理位置信息语义表达方法研究</td>
<td>电子工程学院</td>
<td>焦维超</td>
</tr>
<tr>
<td>22</td>
<td>人才培育项目</td>
<td>全反射电磁环境下电磁波双向分布与统计模型的研究</td>
<td>电子工程学院</td>
<td>王卫民</td>
</tr>
<tr>
<td>23</td>
<td>人才培育项目</td>
<td>单层NbSe2电声耦合效应及其超导态研究</td>
<td>电子工程学院</td>
<td>杨巍</td>
</tr>
<tr>
<td>24</td>
<td>人才培育项目</td>
<td>太赫兹可调表面等离子激元和辐射源研究</td>
<td>电子工程学院</td>
<td>邢利梅</td>
</tr>
<tr>
<td>25</td>
<td>人才培育项目</td>
<td>一种柔性电极的制备及性能研究</td>
<td>电子工程学院</td>
<td>任晓峰</td>
</tr>
<tr>
<td>26</td>
<td>人才培育项目</td>
<td>用户密集D2D网络容量分析与优化</td>
<td>信息与通信工程学院</td>
<td>郭一珺</td>
</tr>
<tr>
<td>27</td>
<td>人才培育项目</td>
<td>基于阻抗调制电磁超表面的涡旋电磁波天线关键技术研究</td>
<td>信息与通信工程学院</td>
<td>邓力</td>
</tr>
<tr>
<td>28</td>
<td>人才培育项目</td>
<td>软件定义无线传感网关键技术研究与系统开发</td>
<td>信息与通信工程学院</td>
<td>赵敏</td>
</tr>
<tr>
<td>29</td>
<td>人才培育项目</td>
<td>基于机器学习的无线网络诊断及优化技术研究</td>
<td>信息与通信工程学院</td>
<td>高伟东</td>
</tr>
<tr>
<td>30</td>
<td>人才培育项目</td>
<td>面向空间网络的完好性定量分析研究</td>
<td>信息与通信工程学院</td>
<td>郭一珺</td>
</tr>
<tr>
<td>31</td>
<td>人才培育项目</td>
<td>空地异构网络分流机理研究</td>
<td>信息与通信工程学院</td>
<td>尉志青</td>
</tr>
<tr>
<td>32</td>
<td>人才培育项目</td>
<td>物理层安全中的广义人工噪声技术研究</td>
<td>信息与通信工程学院</td>
<td>张雪菲</td>
</tr>
<tr>
<td>序号</td>
<td>课题类别</td>
<td>课题名称</td>
<td>二级单位</td>
<td>课题负责人</td>
</tr>
<tr>
<td>-----</td>
<td>----------------</td>
<td>---------------------------------</td>
<td>--------------</td>
<td>-------------</td>
</tr>
<tr>
<td>34</td>
<td>人才培育项目</td>
<td>基于文本描述的草图检索算法</td>
<td>信息与通信工程学院</td>
<td>齐勇刚</td>
</tr>
<tr>
<td>35</td>
<td>人才培育项目</td>
<td>无线供能通信系统性能研究</td>
<td>信息与通信工程学院</td>
<td>赵龙</td>
</tr>
<tr>
<td>36</td>
<td>自由探索项目</td>
<td>下一代无线局域网关键技术研究</td>
<td>信息与通信工程学院</td>
<td>吴浩击</td>
</tr>
<tr>
<td>37</td>
<td>自由探索项目</td>
<td>科技信息推送服务平台建设</td>
<td>数字媒体与设计艺术学院</td>
<td>王海智</td>
</tr>
<tr>
<td>序号</td>
<td>项目类别</td>
<td>项目名称</td>
<td>二级单位</td>
<td>项目负责人</td>
</tr>
<tr>
<td>------</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>1</td>
<td>横向合作项目</td>
<td>认知接入网软件平台定制开发</td>
<td>信息与通信工程学院</td>
<td>赵敏</td>
</tr>
<tr>
<td>2</td>
<td>横向合作项目</td>
<td>房地产业企业文化的发展问题研究</td>
<td>马克思主义学院</td>
<td>赵玲</td>
</tr>
<tr>
<td>3</td>
<td>横向合作项目</td>
<td>物联网在现代通信系统中的应用研究</td>
<td>信息与通信工程学院</td>
<td>王晓湘</td>
</tr>
<tr>
<td>4</td>
<td>横向合作项目</td>
<td>燃机技术申报翻译</td>
<td>人文学院</td>
<td>王琳</td>
</tr>
<tr>
<td>5</td>
<td>横向合作项目</td>
<td>用友 NC 移动应用开发项目(二期)</td>
<td>软件学院</td>
<td>崔毅东</td>
</tr>
<tr>
<td>6</td>
<td>横向合作项目</td>
<td>外教社 2016 年数字产品技术服务</td>
<td>人文学院</td>
<td>范姣莲</td>
</tr>
<tr>
<td>7</td>
<td>横向合作项目</td>
<td>输电线路施工机械数据整理录入与分析</td>
<td>信息光子学与光通信研究院</td>
<td>王重远</td>
</tr>
<tr>
<td>8</td>
<td>横向合作项目</td>
<td>多元统计分析系统</td>
<td>信息光子学与光通信研究院</td>
<td>王重远</td>
</tr>
<tr>
<td>9</td>
<td>横向合作项目</td>
<td>信息业发展对互联网监管和互联互通影响研究</td>
<td>经济管理学院</td>
<td>曾剑秋</td>
</tr>
<tr>
<td>10</td>
<td>横向合作项目</td>
<td>航显系统 LED 控制子系统改造</td>
<td>网络技术研究院</td>
<td>徐晓航</td>
</tr>
<tr>
<td>11</td>
<td>横向合作项目</td>
<td>MP4 媒体格式编解码器定制开发</td>
<td>信息与通信工程学院</td>
<td>庄伯金</td>
</tr>
<tr>
<td>12</td>
<td>横向合作项目</td>
<td>指纹识别技术研究与咨询</td>
<td>信息与通信工程学院</td>
<td>庄伯金</td>
</tr>
<tr>
<td>13</td>
<td>横向合作项目</td>
<td>区域性返还式文献共享系统的研究和实现</td>
<td>图书馆</td>
<td>王海</td>
</tr>
<tr>
<td>14</td>
<td>横向合作项目</td>
<td>城市轨道交通关键技术设备在线监测与智能诊断系统数据中心的研究与开发</td>
<td>软件学院</td>
<td>崔毅东</td>
</tr>
<tr>
<td>15</td>
<td>横向合作项目</td>
<td>低轨卫星移动通信中 OFDM 抗频偏技术研究</td>
<td>电子工程学院</td>
<td>翟高峰</td>
</tr>
<tr>
<td>16</td>
<td>横向合作项目</td>
<td>基于移动互联网大数据的业务精细洞察方法</td>
<td>计算机学院</td>
<td>郭海红</td>
</tr>
<tr>
<td>序号</td>
<td>项目类别</td>
<td>项目名称</td>
<td>二级单位</td>
<td>项目负责人</td>
</tr>
<tr>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
<td>---</td>
</tr>
<tr>
<td>17</td>
<td>横向合作项目</td>
<td>VoLTE 业务模型及调度算法的研究与开发</td>
<td>计算机学院</td>
<td>吴伟明</td>
</tr>
<tr>
<td>18</td>
<td>横向合作项目</td>
<td>通信电源技术发展及研究</td>
<td>经济管理学院</td>
<td>张 枫</td>
</tr>
<tr>
<td>19</td>
<td>横向合作项目</td>
<td>基于动作采集的多机协同算法优化</td>
<td>信息与通信工程学院</td>
<td>王 珂</td>
</tr>
<tr>
<td>20</td>
<td>横向合作项目</td>
<td>依托“爱课程”平台的大规模开放在线课程的可行性研究</td>
<td>人文学院</td>
<td>焦丽霞</td>
</tr>
<tr>
<td>21</td>
<td>横向合作项目</td>
<td>基于大学英语教学平台的口语教学策略研究</td>
<td>人文学院</td>
<td>焦丽霞</td>
</tr>
<tr>
<td>22</td>
<td>横向合作项目</td>
<td>基于阅读的仿写训练对学生写作水平影响的实证研究</td>
<td>人文学院</td>
<td>焦丽霞</td>
</tr>
<tr>
<td>23</td>
<td>横向合作项目</td>
<td>典型黑土区耕地土壤侵蚀危险程度研究与数据加工</td>
<td>软件学院</td>
<td>杨正球</td>
</tr>
<tr>
<td>24</td>
<td>横向合作项目</td>
<td>基于电力软件缺陷模式的代码检测技术研究</td>
<td>自动化学院</td>
<td>李端玲</td>
</tr>
<tr>
<td>25</td>
<td>横向合作项目</td>
<td>新一代超高速射频识别技术（EPC Gen2V2）平台与验证</td>
<td>信息光子学与光通信研究所</td>
<td>张 霞</td>
</tr>
<tr>
<td>26</td>
<td>横向合作项目</td>
<td>智慧医疗分诊的检索和推荐研究</td>
<td>信息与通信工程学院</td>
<td>胡 钧</td>
</tr>
<tr>
<td>27</td>
<td>横向合作项目</td>
<td>CWAVE 通信模式单跳通信性能测试</td>
<td>信息与通信工程学院</td>
<td>朱孔林</td>
</tr>
<tr>
<td>28</td>
<td>横向合作项目</td>
<td>税务公安大数据分析系统分布式架构设计研发</td>
<td>信息与通信工程学院</td>
<td>乔婉婉</td>
</tr>
<tr>
<td>序号</td>
<td>项目类别</td>
<td>项目名称</td>
<td>二级单位</td>
<td>项目负责人</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>29</td>
<td>横向合作项目</td>
<td>云计算平台管控系统研发</td>
<td>信息与通信工程学院</td>
<td>乔媛媛</td>
</tr>
<tr>
<td>30</td>
<td>横向合作项目</td>
<td>流动人口大数据分析系统研发</td>
<td>信息与通信工程学院</td>
<td>乔媛媛</td>
</tr>
<tr>
<td>31</td>
<td>横向合作项目</td>
<td>智能交通管理控制集成平台(一期)</td>
<td>网络技术研究院</td>
<td>林昭文</td>
</tr>
<tr>
<td>序号</td>
<td>项目类别</td>
<td>项目名称</td>
<td>二级单位</td>
<td>项目负责人</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>------------</td>
</tr>
<tr>
<td>32</td>
<td>横向合作项目</td>
<td>智能交通管理控制集成平台（二期）</td>
<td>网络技术研究院</td>
<td>林昭文</td>
</tr>
<tr>
<td>33</td>
<td>横向合作项目</td>
<td>MOOC（慕课）时代基于输出驱动假设的大学英语口语课程创新设计与研究</td>
<td>人文学院</td>
<td>张钫炜</td>
</tr>
<tr>
<td>34</td>
<td>横向合作项目</td>
<td>安全软件标注、拦截骚扰电话和垃圾短信的法理基础</td>
<td>人文学院</td>
<td>谢永江</td>
</tr>
<tr>
<td>35</td>
<td>横向合作项目</td>
<td>OPNFV 动态集成机制和自动化部署技术研究</td>
<td>网络技术研究院</td>
<td>王敬宇</td>
</tr>
<tr>
<td>36</td>
<td>横向合作项目</td>
<td>云计算环境中数据安全大规模测试技术研究</td>
<td>计算机学院</td>
<td>牛少彰</td>
</tr>
<tr>
<td>37</td>
<td>横向合作项目</td>
<td>Sakai 教学平台技术服务</td>
<td>网络教育学院</td>
<td>李建伟</td>
</tr>
<tr>
<td>38</td>
<td>横向合作项目</td>
<td>软件定义网络关键技术研究和原型开发</td>
<td>信息光子学与光通信研究院</td>
<td>王磊</td>
</tr>
<tr>
<td>39</td>
<td>横向合作项目</td>
<td>软件定义光接入网应用需求和关键技术研究</td>
<td>信息光子学与光通信研究院</td>
<td>王磊</td>
</tr>
<tr>
<td>40</td>
<td>横向合作项目</td>
<td>全光交换网络电力应用组网方式研究</td>
<td>信息光子学与光通信研究院</td>
<td>王磊</td>
</tr>
<tr>
<td>41</td>
<td>横向合作项目</td>
<td>基于爱课堂的“大学英语”在线论坛使用影响因子及成效研究</td>
<td>人文学院</td>
<td>张钫炜</td>
</tr>
<tr>
<td>42</td>
<td>横向合作项目</td>
<td>全国分县综合文档采集建库（2016）</td>
<td>自动化学院</td>
<td>庄育锋</td>
</tr>
<tr>
<td>43</td>
<td>横向合作项目</td>
<td>软件定义网络的控制系统</td>
<td>网络技术研究院</td>
<td>王敬宇</td>
</tr>
<tr>
<td>44</td>
<td>横向合作项目</td>
<td>Alljoyn 标准项目、智能家电接入技术研究和智能家电语义</td>
<td>信息与通信工程学院</td>
<td>李永华</td>
</tr>
<tr>
<td>45</td>
<td>横向合作项目</td>
<td>中国移动宁夏公司 2013-2015 年战略发展规划</td>
<td>经济管理学院</td>
<td>尹涛</td>
</tr>
<tr>
<td>46</td>
<td>横向合作项目</td>
<td>基于群智感知图像的空气质量检测</td>
<td>计算机学院</td>
<td>刘亮</td>
</tr>
<tr>
<td>序号</td>
<td>项目类别</td>
<td>项目名称</td>
<td>二级单位</td>
<td>项目负责人</td>
</tr>
<tr>
<td>-----</td>
<td>----------</td>
<td>----------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>47</td>
<td>横向合作项目</td>
<td>基于机器学习的运动视频分析技术研究</td>
<td>计算机学院</td>
<td>刘 武</td>
</tr>
<tr>
<td>48</td>
<td>横向合作项目</td>
<td>智能硬件应用开发</td>
<td>信息与通信工程学院</td>
<td>赵 龙</td>
</tr>
<tr>
<td>49</td>
<td>横向合作项目</td>
<td>可信软件理论、方法集成与综合试验平台</td>
<td>网络技术研究院</td>
<td>金大海</td>
</tr>
<tr>
<td>50</td>
<td>横向合作项目</td>
<td>百卓人脸识别演示系统（第二、三阶段）</td>
<td>电子工程学院</td>
<td>明 悦</td>
</tr>
<tr>
<td>51</td>
<td>横向合作项目</td>
<td>健康管理 APP 系统</td>
<td>信息与通信工程学院</td>
<td>高伟东</td>
</tr>
<tr>
<td>52</td>
<td>横向合作项目</td>
<td>基于 CDHS 的数据分析平台</td>
<td>信息与通信工程学院</td>
<td>周文莉</td>
</tr>
<tr>
<td>53</td>
<td>横向合作项目</td>
<td>基于大数据分析的网络流量异常监测系统研发</td>
<td>信息与通信工程学院</td>
<td>刘 军</td>
</tr>
<tr>
<td>54</td>
<td>横向合作项目</td>
<td>电子商务与快递物流模式研究与相关技术研发</td>
<td>自动化学院</td>
<td>杨萌柯</td>
</tr>
<tr>
<td>55</td>
<td>横向合作项目</td>
<td>云平台资源自动伸缩控制系统</td>
<td>网络技术研究院</td>
<td>王 晶</td>
</tr>
<tr>
<td>56</td>
<td>横向合作项目</td>
<td>半导体材料模拟平台技术开发</td>
<td>信息与通信工程学院</td>
<td>芦鹏飞</td>
</tr>
<tr>
<td>57</td>
<td>横向合作项目</td>
<td>跨界规则内容类型特性分析工具的研发</td>
<td>计算机学院</td>
<td>马 跃</td>
</tr>
<tr>
<td>58</td>
<td>横向合作项目</td>
<td>智能床垫生命体征检测算法研究</td>
<td>信息与通信工程学院</td>
<td>高伟东</td>
</tr>
<tr>
<td>59</td>
<td>横向合作项目</td>
<td>二次过滤策略评估优化工具的研发</td>
<td>电子工程学院</td>
<td>王小娟</td>
</tr>
<tr>
<td>60</td>
<td>横向合作项目</td>
<td>信息输入方式对口语流利性的影响研究——以北邮计算机学院大二学生为例</td>
<td>人文学院</td>
<td>宋 倩</td>
</tr>
<tr>
<td>序号</td>
<td>项目类别</td>
<td>项目名称</td>
<td>二级单位</td>
<td>项目负责人</td>
</tr>
<tr>
<td>------</td>
<td>------------</td>
<td>--</td>
<td>------------</td>
<td>-------------</td>
</tr>
<tr>
<td>61</td>
<td>横向合作项目</td>
<td>中西部互联网商业与金融法律问题研究：以江西为例</td>
<td>人文学院</td>
<td>黄东海</td>
</tr>
<tr>
<td>62</td>
<td>横向合作项目</td>
<td>LTE 深度覆盖评价体系研究</td>
<td>计算机学院</td>
<td>谷勇浩</td>
</tr>
<tr>
<td>63</td>
<td>横向合作项目</td>
<td>推进电子商务立法工作研究</td>
<td>人文学院</td>
<td>崔聪聪</td>
</tr>
<tr>
<td>64</td>
<td>横向合作项目</td>
<td>“商业追踪”商业知识图谱构建</td>
<td>信息与通信工程学院</td>
<td>纪阳</td>
</tr>
<tr>
<td>65</td>
<td>横向合作项目</td>
<td>“青年之声”文本分类标准及智能分类程序建设</td>
<td>软件学院</td>
<td>傅湘玲</td>
</tr>
<tr>
<td>66</td>
<td>横向合作项目</td>
<td>THz 波传输系统研究</td>
<td>电子工程学院</td>
<td>俞俊生</td>
</tr>
<tr>
<td>67</td>
<td>横向合作项目</td>
<td>Web2.0 社交数据采集与分析</td>
<td>软件学院</td>
<td>傅湘玲</td>
</tr>
<tr>
<td>68</td>
<td>横向合作项目</td>
<td>重大自然灾害应急救助物资调度软件加工与测试</td>
<td>自动化学院</td>
<td>翁迅</td>
</tr>
<tr>
<td>69</td>
<td>横向合作项目</td>
<td>低功耗海量数据存储系统研发</td>
<td>信息与通信工程学院</td>
<td>刘军</td>
</tr>
<tr>
<td>70</td>
<td>横向合作项目</td>
<td>科技英语阅读课程的 CBI 教学模式探索—探索型学习能力的培养</td>
<td>人文学院</td>
<td>龚庆华</td>
</tr>
<tr>
<td>71</td>
<td>横向合作项目</td>
<td>微读经典</td>
<td>人文学院</td>
<td>金梅</td>
</tr>
<tr>
<td>72</td>
<td>横向合作项目</td>
<td>互联网+时代大学英语学习者自我调节的构成要素与个体差异</td>
<td>人文学院</td>
<td>穆婕</td>
</tr>
<tr>
<td>73</td>
<td>横向合作项目</td>
<td>高压线绝缘串的自动化清扫结构优化与性能分析</td>
<td>自动化学院</td>
<td>张延恒</td>
</tr>
<tr>
<td>74</td>
<td>横向合作项目</td>
<td>数字城市信息化 DCI 平台研发</td>
<td>计算机学院</td>
<td>吴伟明</td>
</tr>
<tr>
<td>序号</td>
<td>项目类别</td>
<td>项目名称</td>
<td>二级单位</td>
<td>项目负责人</td>
</tr>
<tr>
<td>------</td>
<td>-----------</td>
<td>-----------</td>
<td>-----------</td>
<td>-------------</td>
</tr>
<tr>
<td>75</td>
<td>横向合作项目</td>
<td>移动通信的端到端加密系统</td>
<td>计算机学院</td>
<td>牛少彰</td>
</tr>
<tr>
<td>76</td>
<td>横向合作项目</td>
<td>现代服务业共性服务技术咨询</td>
<td>计算机学院</td>
<td>欧中洪</td>
</tr>
<tr>
<td>77</td>
<td>横向合作项目</td>
<td>面向电力应急通信的高抗毁柔性无线安全接入技术研究</td>
<td>信息与通信工程学院</td>
<td>王晓湘</td>
</tr>
<tr>
<td>78</td>
<td>横向合作项目</td>
<td>洛克“中国观”的知识来源研究</td>
<td>人文学院</td>
<td>韩凌</td>
</tr>
<tr>
<td>79</td>
<td>横向合作项目</td>
<td>大数据时代信息学科研究生质量监督及信息服务研究</td>
<td>经济管理学院</td>
<td>齐佳音</td>
</tr>
<tr>
<td>80</td>
<td>横向合作项目</td>
<td>5G关键技术研究与仿真评估</td>
<td>信息与通信工程学院</td>
<td>吴湛击</td>
</tr>
<tr>
<td>81</td>
<td>横向合作项目</td>
<td>5G仿真平台信道模型模块校准</td>
<td>信息与通信工程学院</td>
<td>吴湛击</td>
</tr>
<tr>
<td>82</td>
<td>横向合作项目</td>
<td>LTE-M RNA4及定位增强技术合作</td>
<td>信息与通信工程学院</td>
<td>吴湛击</td>
</tr>
<tr>
<td>83</td>
<td>横向合作项目</td>
<td>NFC测试仪表一期（射频模块及SWP模块）</td>
<td>光电信息学院（信息光子学与光通信研究院）</td>
<td>张锦南</td>
</tr>
<tr>
<td>84</td>
<td>横向合作项目</td>
<td>农村土地确权登记信息报送系统（三期建设）</td>
<td>光电信息学院（信息光子学与光通信研究院）</td>
<td>张锦南</td>
</tr>
<tr>
<td>85</td>
<td>横向合作项目</td>
<td>2016EPC及PCC新技术研究及实验室测试</td>
<td>电子工程学院</td>
<td>魏翼飞</td>
</tr>
<tr>
<td>86</td>
<td>横向合作项目</td>
<td>基于P2PSIP(RELOAD)的轻量级VoIP系统研发</td>
<td>网络技术研究院</td>
<td>双锴</td>
</tr>
<tr>
<td>87</td>
<td>横向合作项目</td>
<td>无线传播特性研究及应用</td>
<td>信息与通信工程学院</td>
<td>张建华</td>
</tr>
</tbody>
</table>